
John Fox

Writing R Commander
Plug-in Packages

Version 3.4-0

2017-08-29

Contents

1 Introduction 1

2 The General Structure of R Commander Plug-in Packages 3
2.1 The R Commander GUI . 3
2.2 Elements of R Commander Plug-in Packages 5
2.3 Making R Commander Plug-ins Self-Starting 7
2.4 The DESCRIPTION and NAMESPACE Files for a Plug-in Package 9

3 R Commander and Plug-in Menus 13
3.1 The Rcmdr-menus.txt File . 13
3.2 The menus.txt File for an R Commander Plug-in Package 16

3.2.1 The RcmdrPlugin.TeachingDemos Package 17
3.2.2 The RcmdrPlugin.survival Package 19

4 Building R Commander Dialog Boxes 23
4.1 Examples of R Commander Dialogs . 23

4.1.1 Load Packages: A Simple Dialog With Basic Buttons 24
4.1.2 Correlation Test : A Dialog With Radio Buttons and That Saves Its

State . 27
4.1.3 Two-Way Table: A Tabbed Dialog 30
4.1.4 Reorder Factor Levels: A Dialog With a Subdialog 36
4.1.5 Histogram: A Dialog That Uses the R Commander Plot by Widget . 40

4.2 Saving and Retrieving State Information 46
4.3 How the R Commander Interacts With the R Interpreter 49

5 Handling Statistical Models in R Commander Plug-in Packages 51
5.1 The Linear Model Dialog . 51
5.2 The Cox-Regression Model Dialog in the RcmdrPlugin.survival Package 55
5.3 The R Commander Models Menu . 57

5.3.1 The model-capabilities.txt File 61
5.4 The RcmdrModels: Field in the Plug-in Package DESCRIPTION File 63

6 Debugging R Commander Plug-in Packages 65
6.1 Debugging Callback Functions . 65

Appendix A A Guide to the R Commander Utility Functions 71
A.1 Building Dialogs . 71
A.2 Utilities Useful for onOK() Button-Callback Functions 82
A.3 Working With the Active Data Set and Active Statistical Model 85
A.4 Predicate Functions . 88

A.4.1 Predicates Associated With Data Sets 88
A.4.2 Predicates Associated With Statistical Models 88
A.4.3 Predicates Associated With Operating Systems 89

iii

iv

A.4.4 Other Predicates . 89

References 91

Author Index 93

Subject Index 95

1

Introduction

As its title implies, Using the R Commander (Fox, 2017) is written from the point of view
of the user of the R Commander graphical user interface (GUI) to R. The book includes a
brief introduction to the use of R Commander plug-in packages, employing the RcmdrPlu-
gin.TeachingDemos and RcmdrPlugin.survival packages as examples. In contrast, the
current document aims to be a comprehensive manual for R Commander plug-in package
authors.

Support for plug-in packages has been incorporated in the R Commander for about
10 years, but previous descriptions of how to write R Commander plug-ins, in Fox (2007)
and Fox and Carvalho (2012), are relatively brief, incomplete, and out-of-date. Despite
these deficiencies, there are currently about 40 R Commander plug-in packages on CRAN
(the Comprehensive R Archive Network). I hope that this manual will assist writers of
new R Commander plug-in packages, and, in certain cases, facilitate the maintenance and
improvement of existing plug-ins.

I make three fundamental assumptions about what you already know how to do:

1. I assume that you know how to program in R. It’s probably unreasonable to write
an R Commander plug-in package as your first R programming project. There are
many existing introductions to programming in R. You’ll find a fairly recent
bibliography of some of these sources at http://tinyurl.com/ICPSR-R-course.

2. I also assume that you know how to write R packages. An R Commander plug-in
package is, in essence, a standard R package with a few special components. If you
are new to writing R packages, it’s probably a good idea to start with a simple
package, even if it’s just a toy example, before writing an R Commander plug-in
package, but it should be feasible to write an R Commander plug-in as your first
serious R package.

In comparison to R programming, there’s a relative dearth of information avail-
able on writing R packages. The definitive reference is the Writing R Exten-
sions manual (R Core Team, 2016) that comes with the standard R distribution,
but, like most manuals, it’s not an ideal source for learners. The most ambitious
book-length treatment of the subject is Wickham (2015) (also available on-line at
http://r-pkgs.had.co.nz/), which describes an idiosyncratic approach to package
development. The book is clear, detailed, and comprehensive, but you must buy
into Hadley Wickham’s approach—an approach that, I should add, has become
increasingly popular.

3. Finally, I assume that you have some familiarity with Tcl/Tk, the GUI builder
used by the R Commander. The tcltk package, which is part of the standard R
distribution, provides a convenient interface to Tcl/Tk. It’s reasonable to learn
Tcl/Tk in order to write an R Commander plug-in. Indeed, I originally learned to
use Tcl/Tk in order to write the Rcmdr package.

The tcltk package is described by Peter Dalgaard, the author of the pack-
age, in two R News articles (Dalgaard, 2001, 2002); although these articles are

1

2 1 Introduction

somewhat dated, they’re still useful. Philippe Grosjean maintains a variety of
very helpful “R Tcl/Tk recipes,” which originated with James Wettenhall, at
http://www.sciviews.org/recipes/tcltk/toc/.

There are several books available on Tcl/Tk; although these don’t make direct
reference to the R tcltk package, they are still very useful. My favourite reference
is Ousterhout and Jones (2010). There are also valuable on-line resources, such
as the manual at https://www.tcl.tk/man/tcl8.4/.

Subsequent chapters of Writing R Commander Plug-in Packages deal with the following
topics:

Chapter 2 provides an overview of the structure of an R Commander plug-in package.

Chapter 3 explains how the R Commander menus work and how plug-in packages add to
and modify them.

Chapter 4 shows you how to construct R Commander dialog boxes.

Chapter 5 shows how to add new classes of statistical models to the R Commander.

Chapter 6 deals with the special challenges that arise in debugging R Commander plug-ins.

Appendix A is a systematic reference for the R Commander utility functions useful in
constructing plug-in packages.

I suggest that you download and unpack the sources (i.e., the .tar.gz files) for the
Rcmdr, RcmdrPlugin.TeachingDemos, and RcmdrPlugin.survival packages, be-
cause I’ll make repeated references to these packages in subsequent chapters. The three pack-
ages are available on CRAN at https://cran.r-project.org/web/packages/ and from CRAN
mirrors (e.g., https://cloud.r-project.org/web/packages/).

This manual is current as of version 2.4-0 of the Rcmdr package.

2

The General Structure of R Commander Plug-in
Packages

This chapter provides an overview of the structure of an R Commander plug-in package, with
the details elaborated in subsequent chapters. The chapter begins with a general explanation
of how the R Commander GUI works.

2.1 The R Commander GUI

Actions in the R Commander are (in most cases1) initiated via its menu bar, which is
illustrated in Figure 2.1. The several top-level menus in the menu bar—File, Edit , Data, and
so on—each leads to sub-menus and menu items, as illustrated in Figure 2.2 for the Statistics
menu: The Statistics menu contains a number of sub-menus—Summaries, Contingency
tables, Means, etc.—and in each case, the sub-menu includes menu items, as shown in the
figure for the Summaries sub-menu.2 Taken as a whole, the R Commander menus comprise
a tree structure, with the menu bar at the root, the top-level menus as the main branches,
and menu items as the leaves (or ultimate branches).

Each menu item in the R Commander is associated with a callback function. This is an
ordinary R function that is called (with no arguments) when the corresponding menu item
is selected. The callback function, in turn, does one of two things:

1. It directly initiates an action. An example of a callback function of this kind is
the function invoked by Statistics > Summaries > Active data set, which, in turn,
calls the R summary() function with the current data set as its argument—e.g.,
summary(Duncan).

2. It constructs a Tcl/Tk modal dialog box seeking additional user input.3 By con-
vention, menu items leading to dialogs end in ellipses (. . .); for example Statistics
> Summaries > Numerical summaries....

Menu items in the R Commander may either be active or inactive (“grayed-out”), de-
pending upon whether or not they are appropriate in the current context. For example, in
the absence of an active data set, almost all of the menu items under the Statistics menu
would be inactive.4

1Actions may also be initiated by pressing buttons in the R Commander toolbar : to change the active
data set or active statistical model, or to edit or view the active data set. Additionally, the user may enter
and execute commands in the R Commander R Script tab.

2In one case, a sub-menu of the Summaries menu also contains a sub-sub-menu: Summaries > Dimen-
sional analysis > Cluster analysis.

3A modal dialog causes the main application—in this case, the R Commander—to wait until the user
dismisses the dialog, typically by pressing the OK or Cancel button in the dialog.

4The lone exception is Statistics > Contingency tables > Enter and analyze two-way table... .

3

4 2 The General Structure of R Commander Plug-in Packages

FIGURE 2.1: The R Commander menu bar and top-level menus.

FIGURE 2.2: The Statistics menu, showing the expanded Summaries sub-menu. The data
set from the car package was previously made the active data set in the R Commander
via the Data > Data in packages > Read data from an attached package... menu item and
associated dialog.

2.2 Elements of R Commander Plug-in Packages 5

2.2 Elements of R Commander Plug-in Packages

An R Commander plug-in package is, in the first instance, an ordinary R package, and so
the source tree for a plug-in package includes the usual DESCRIPTION and NAMESPACE files,
along with R and man subdirectories. Other standard package files and directories may also
be present, such as a NEWS file, detailing the history of changes to the package, and a data

subdirectory, if the package provides data sets.
The contents of the files and directories used in a plug-in package are more or less

standard, with several exceptions:

1. The package DESCRIPTION file may contain an RcmdrModels: field defining new
classes of statistical models provided by the package, as explained in Chapter 5.

2. At least some of the .R files in the R directory will define callback functions, to
be invoked by menu items provided by the plug-in package. R Commander dialogs
are discussed in Chapter 4.

3. Plug-in packages add to and otherwise modify the R Commander menu tree, via
the file menus.txt in the source package’s inst/etc subdirectory.5 This file is
a necessary component of a plug-in package, and the R Commander uses the
presence of the file to recognize that a package is an R Commander plug-in. The
structure of the menus.txt file, and more generally how the R Commander menus
work, are described in detail in Chapter 3.

4. As mentioned, plug-in packages can introduce new classes of statistical models
to the R Commander. An optional file, model-capabilities.txt, also residing
in the source packages’s inst/etc subdirectory, may be used to specify how new
model classes interact with the menu items and dialog boxes in the R Commander
Models menu. See Chapter 5.

As an illustration, the directory and file tree for the RcmdrPlugin.survival package
is shown in slightly abbreviated form in Figure 2.3:

� A few inessential directories and files are omitted. For example, there is, in addition to the
directories shown, a po directory containing files for translating messages from English
into other languages.

� The ellipses (...) in the file and directory tree represent additional .Rd and .R files that
are omitted for brevity.

� The file v49i07.pdf in the doc subdirectory contains documentation for the package, in
the form of a paper (Fox and Carvalho, 2012) that appeared in the Journal of Statistical
Software.

To reiterate, with the exception of the files inst/etc/menus.txt and inst/etc/model-

capabilities.txt, all of the other directories and files could appear in any R package. In
subsequent chapters, I’ll ignore aspects that are common to all R packages, such as .Rd

documentation files, files in the data subdirectory, and most of the content of the DESCRIP-

TION and NAMESPACE files. Using the RcmdrPlugin.TeachingDemos and RcmdrPlu-
gin.survival packages as examples, I’ll focus instead on what’s unique to R Commander
plug-in packages.

5Under a Windows system, this subdirectory would typically be represented as inst\etc; in this manual,
I’ll use forward-slashes (/) to separate directories.

6 2 The General Structure of R Commander Plug-in Packages

DESCRIPTION

NAMESPACE

NEWS

data

Dialysis.rda

Rossi.rda

inst

CITATION

doc

v49i07.pdf

etc

menus.txt

model-capabilities.txt

man

Dialysis.Rd

mfrow.Rd

plot.coxph.Rd

...

R

CoxModel.R

diagnostics.R

globals.R

...

FIGURE 2.3: Abbreviated directory and file tree for the RcmdrPlugin.survival source
package.RcmdrPlugin.survival Directories are shown in italics, and the ellipses (...)
represent omitted .Rd and .R files.

2.3 Making R Commander Plug-ins Self-Starting 7

2.3 Making R Commander Plug-ins Self-Starting

On start-up, the R Commander searches for plug-in packages in the user’s R package library,
recognizing a plug-in package by the presence of the tell-tale etc/menus.txt (described in
the next chapter) in the installed package. This allows the user to load the plug-in package
and restart the R Commander interface via the menu selection Tools > Load Rcmdr plug-
in(s).

An R Commander plug-in can also be made self-starting by including the .onAttach()

function in Figure 2.4 in the plug-in package’s sources.6 A self-starting plug-in can be loaded
directly via the library() command (e.g., library(RcmdrPlugin.survival)), which also
loads the Rcmdr package and starts the R Commander GUI with the plug-in activated.

6I’m grateful to Richard Heiberger for contributing this self-starting mechanism to the R Commander.

8 2 The General Structure of R Commander Plug-in Packages

.onAttach <- function(libname, pkgname){

if (!interactive()) return()

Rcmdr <- options()$Rcmdr

plugins <- Rcmdr$plugins

if (!pkgname %in% plugins) {

Rcmdr$plugins <- c(plugins, pkgname)

options(Rcmdr=Rcmdr)

if("package:Rcmdr" %in% search()) {

if(!getRcmdr("autoRestart")) {

closeCommander(ask=FALSE, ask.save=TRUE)

Commander()

}

}

else {

Commander()

}

}

}

FIGURE 2.4: The .onAttach() function to make an R Commander plug-in
package self-starting. The code for this function is available for download at
http://socserv.mcmaster.ca/jfox/Books/RCommander/onAttach.R. This is a very slightly
modified version of a function originally contributed by Richard Heiberger.

2.4 The DESCRIPTION and NAMESPACE Files for a Plug-in Package 9

2.4 The DESCRIPTION and NAMESPACE Files for a Plug-in Package

Most of what’s involved in writing NAMESPACE and DESCRIPTION files for R Commander
plug-ins is general to R packages, but there are a few special considerations. To focus the
discussion, the DESCRIPTION and NAMESPACE files for the RcmdrPlugin.TeachingDemos
and RcmdrPlugin.survival packages appear in Figures 2.5 and Figures 2.6.

The following points are noteworthy:

� Because you’ll almost surely use many of the utility functions in the Rcmdr package
to construct dialog boxes for your plug-in, and because the Rcmdr package re-exports
many functions from the tcltk and tcltk2 packages that you may want to use, it generally
makes sense to import the complete namespace of the Rcmdr package. This is reflected in
the Imports: fields of both illustrative DESCRIPTION files and in the import() directives
of both NAMESPACE files.

� You may have to import additional functions from the tcltk or tcltk2 packages that aren’t
re-exported by the R Commander package. You can, but need not, list these packages under
Imports: in the DESCRIPTION file, because they are already dependencies of the Rcmdr
package, but you should use appropriate importFrom() directives in your NAMESPACE

file, as illustrated for the RcmdrPlugin.TeachingDemos and RcmdrPlugin.survival
packages in Figure 2.6, both of which import specific functions from the tcltk package.

� If your plug-in package provides a GUI for another R package—as is the case for the two
illustrative plug-ins, which create menus and dialogs respectively for the TeachingDemos
(Snow, 2016) and survival (Therneau, 2015) packages—it likely makes sense to list the
package in the Depends: field in the DESCRIPTION file (as in Figure 2.5) and to import
the entire package namespace (as in Figure 2.6).

� In other cases, you can be less promiscuous about imports, as you can be for any R
package.

� Your plug-in should export all callback functions, so that these will be available to the
Rcmdr package for building menus. Also export whatever else should be available glob-
ally to a user duplicating the commands that your plug-in generates. In the case of the
two illustrative packages, it was sensible and simplest to use the exportPattern() di-
rective to export all objects defined in the package (whose names don’t start with a
period, “.”). As illustrated, it’s also necessary to declare method functions that should be
publicly available—plot.coxph() and unfold.data.frame() in the case of the Rcmdr-
Plugin.survival package.

� The RcmdrModels: field, which appears in the DESCRIPTION file for the RcmdrPlu-
gin.survival package, is special, and is explained in Section 5.4.

Finally, the macro-like R Commander utility functions used to construct dialog boxes
(described in Appendix A and many other places in this manual) create local variables
in the environments of your callback functions the existence of which isn’t apparent to R

CMD check when you—or CRAN—check your package. There may also be other sources of
apparently missing global objects that aren’t really missing.

To avoid “no visible binding for global variable” notes during the package-
checking process, which may prevent the CRAN maintainers from accepting your package,
use the globalVariables() function in the package sources to flag these objects. Both of
the illustrative plug-ins do this in a file named globals.R in the package sources, as shown

10 2 The General Structure of R Commander Plug-in Packages

Package: RcmdrPlugin.TeachingDemos

Type: Package

Title: Rcmdr Teaching Demos Plug-in

Version: 1.1-0

Date: 2015-12-08

Author: John Fox <jfox@mcmaster.ca>

Maintainer: John Fox <jfox@mcmaster.ca>

Depends: rgl, TeachingDemos (>= 2.9), tkrplot

Imports: Rcmdr

Description: Provides an Rcmdr "plug-in" based on the TeachingDemos package,

and is primarily for illustrative purposes.

License: GPL (>= 2)

Package: RcmdrPlugin.survival

Type: Package

Title: R Commander Plug-in for the 'survival' Package

Version: 1.2-0

Date: 2017-02-03

Author: John Fox

Maintainer: John Fox <jfox@mcmaster.ca>

Depends: survival, date, stats

Imports: Rcmdr (>= 2.4-0)

Description: An R Commander plug-in for the survival

package, with dialogs for Cox models, parametric survival regression models,

estimation of survival curves, and testing for differences in survival

curves, along with data-management facilities and a variety of tests,

diagnostics and graphs.

License: GPL (>= 2)

LazyLoad: yes

LazyData: yes

RcmdrModels: coxph, survreg, coxph.penal

FIGURE 2.5: Package DESCRIPTION files for the RcmdrPlugin.TeachingDemos (top)
and RcmdrPlugin.survival (bottom) plug-in packages (slightly edited for clarity).

2.4 The DESCRIPTION and NAMESPACE Files for a Plug-in Package 11

RcmdrPlugin.TeachingDemos: last modified 2015-12-08

import(stats, Rcmdr, TeachingDemos, rgl, tkrplot)

importFrom("tcltk", "tkbutton")

importFrom("graphics", "plot", "title")

exportPattern("^[^\\.]")

RcmdrPlugin.survival: last modified 2015-08-26

import(stats, Rcmdr, survival, date)

importFrom("grDevices", "palette")

importFrom("graphics", "legend", "plot")

importFrom(tcltk, tkfont.create, ttkprogressbar, tkwidget, setTkProgressBar,

ttknotebook, tkadd, tkselect)

exportPattern("^[^\\.]")

S3method(plot, coxph)

S3method(unfold, data.frame)

FIGURE 2.6: Package NAMESPACE files for the RcmdrPlugin.TeachingDemos (top) and
RcmdrPlugin.survival (bottom) plug-in packages (slightly edited for clarity).

in Figure 2.7. To discover which objects to include, simply examine the initial package-check
report for “no visible binding for global variable” notes.

12 2 The General Structure of R Commander Plug-in Packages

RcmdrPlugin.TeachingDemos: created 2012-08-28 by J. Fox

globalVariables(c('top', 'buttonsFrame', 'slider.env')

RcmdrPlugin.survival: last modified 2015-08-27

globalVariables(c('.dfbeta', '.mfrow', '.dfbetas',

'top', 'tiesVariable', 'robustVariable', 'subsetVariable', 'rhsVariable',

'tiesFrame', 'robustFrame', 'xBox', 'outerOperatorsFrame', 'operatorsFrame',

'formulaFrame', 'subsetFrame', 'buttonsFrame', 'rhsEntry', '.CoxZPH', '.b',

'.residuals', '.X', '.fitted', '.tab.1.1', 'confintVariable', '.newdata',

'confintFrame', 'typeFrame', 'typeVariable', 'errorVariable', 'survtypeVariable',

'detailVariable', 'conftypeVariable', 'plotconfVariable', '.Survfit',

'survtypeFrame', 'detailFrame', 'conftypeFrame', 'plotconfFrame', 'errorFrame',

'factorsButton', 'allButton', 'clusterButtonsFrame', 'newVar',

'distributionVariable', 'distributionFrame', 'dataTab', 'optionsTab',

'modelTab', 'notebook')

FIGURE 2.7: The globals.R source files for the RcmdrPlugin.TeachingDemos (top)
and RcmdrPlugin.survival (bottom) plug-in packages (slightly edited for clarity).

3

R Commander and Plug-in Menus

The R Commander menus are defined in the file Rcmdr-menus.txt, which resides in the in-

st/etc subdirectory of the Rcmdr package sources. When the Rcmdr package is installed
in a user’s library, Rcmdr-menus.txt, therefore, is in the Rcmdr/etc subdirectory. With one
exception, described in Section 3.2, the structure of a plug-in package’s menus.txt file is
identical to Rcmdr-menus.txt.

3.1 The Rcmdr-menus.txt File

Figure 3.1 shows the lines in the Rcmdr-menus.txt file that define the R Commander File
menu, which is displayed fully expanded in Figure 3.2. These lines appear near the top of
Rcmdr-menus.txt.

It may help to know that the R Commander uses the read.table() command to in-
put the Rcmdr-menus.txt file, with all columns of the resulting data frame declared as
"character". As well, trailing empty strings ("") are implied if there are fewer than seven
fields in a line, although it is clearer to put in the empty strings explicitly, as I’ve done in
Figure 3.1.

Each line (row) of the Rcmdr-menus.txt file represents a menu directive. The meaning
of each field (column) is indicated in the comment (i.e., preceded by #) in the first line:

type Whether the menu directive defines a menu or a menu item. Two menus are defined
in Figure 3.1—the top-level File menu and its Exit sub-menu—and all of the other menu
directives define menu “items” (but see the discussion of operation/parent below). If
the type is remove—a third type—then the corresponding menu or menu item is deleted.
Menu or item deletion is, of course, only sensible for a plug-in package, not in the Rcmdr
package itself, and so there are no delete menu directives in the Rcmdr-menus.txt file.

menu/item In the case of a menu definition, this is the name of the menu-object to be
defined; the name is arbitrary, but it should be unique, and any legal R name will do.
There are two menu objects defined in the example, named fileMenu and exitMenu.

In the case of a menu item definition, this field gives the name of the menu-object to
which the item belongs.

In the case of a cascade operation for a menu (explained further immediately below), the
menu/item field specifies the name of the higher-level menu under which the menu is to
be inserted. For example, in the last two lines of Figure 3.1, exitMenu is inserted under
fileMenu, and fileMenu is inserted under topMenu (representing the R Commander menu
bar).

Finally, for a menu or a menu-item removal, this field gives the name of the menu to be
deleted or the name of the callback function (see below) for the item to be deleted.

13

14 3 R Commander and Plug-in Menus

#
t
y
p
e

m
e
n
u
/
i
t
e
m

o
p
e
r
a
t
i
o
n
/
p
a
r
e
n
t

l
a
b
e
l

c
o
m
m
a
n
d
/
m
e
n
u

a
c
t
i
v
a
t
i
o
n

i
n
s
t
a
l
l
?

m
e
n
u

f
i
l
e
M
e
n
u

t
o
p
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
C
h
a
n
g
e

w
o
r
k
i
n
g

d
i
r
e
c
t
o
r
y
.
.
.
"

S
e
t
w
d

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
O
p
e
n

s
c
r
i
p
t

f
i
l
e
.
.
.
"

l
o
a
d
L
o
g

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

s
c
r
i
p
t
.
.
.
"

s
a
v
e
L
o
g

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

s
c
r
i
p
t

a
s
.
.
.
"

s
a
v
e
L
o
g
A
s

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
m
a
r
k
d
o
w
n
'
)

|
|

g
e
t
R
c
m
d
r
(
'
u
s
e
.
k
n
i
t
r
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
O
p
e
n

R
M
a
r
k
d
o
w
n

f
i
l
e
.
.
.
"

l
o
a
d
R
m
d

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
m
a
r
k
d
o
w
n
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
O
p
e
n

k
n
i
t
r

f
i
l
e
.
.
.
"

l
o
a
d
R
n
w

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
k
n
i
t
r
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

R
M
a
r
k
d
o
w
n

f
i
l
e
.
.
.
"

s
a
v
e
R
m
d

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
m
a
r
k
d
o
w
n
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

k
n
i
t
r

f
i
l
e
.
.
.
"

s
a
v
e
R
n
w

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
k
n
i
t
r
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

R
M
a
r
k
d
o
w
n

f
i
l
e

a
s
.
.
.
"

s
a
v
e
R
m
d
A
s

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
m
a
r
k
d
o
w
n
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

k
n
i
t
r

f
i
l
e

a
s
.
.
.
"

s
a
v
e
R
n
w
A
s

"
"

"
g
e
t
R
c
m
d
r
(
'
u
s
e
.
k
n
i
t
r
'
)
"

i
t
e
m

f
i
l
e
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

o
u
t
p
u
t
.
.
.
"

s
a
v
e
O
u
t
p
u
t

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

o
u
t
p
u
t

a
s
.
.
.
"

s
a
v
e
O
u
t
p
u
t
A
s

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

R
w
o
r
k
s
p
a
c
e
.
.
.
"

s
a
v
e
W
o
r
k
s
p
a
c
e

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
o
m
m
a
n
d

"
S
a
v
e

R
w
o
r
k
s
p
a
c
e

a
s
.
.
.
"

s
a
v
e
W
o
r
k
s
p
a
c
e
A
s

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

m
e
n
u

e
x
i
t
M
e
n
u

f
i
l
e
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

e
x
i
t
M
e
n
u

c
o
m
m
a
n
d

"
F
r
o
m

C
o
m
m
a
n
d
e
r
"

C
l
o
s
e
C
o
m
m
a
n
d
e
r

"
"

"
"

i
t
e
m

e
x
i
t
M
e
n
u

c
o
m
m
a
n
d

"
F
r
o
m

C
o
m
m
a
n
d
e
r

a
n
d

R
"

c
l
o
s
e
C
o
m
m
a
n
d
e
r
A
n
d
R

"
"

"
"

i
t
e
m

f
i
l
e
M
e
n
u

c
a
s
c
a
d
e

"
E
x
i
t
"

e
x
i
t
M
e
n
u

"
"

"
"

i
t
e
m

t
o
p
M
e
n
u

c
a
s
c
a
d
e

"
F
i
l
e
"

f
i
l
e
M
e
n
u

"
"

"
"

F
IG

U
R

E
3.1:

T
h

e
lin

es
(sligh

tly
ed

ited
)

in
th

e
R
c
m
d
r
-
m
e
n
u
s
.
t
x
t

fi
le

th
a
t

d
efi

n
e

th
e
R
C
om

m
an
d
er

F
ile

m
en

u
,

its
E

xit
su

b
-m

en
u

,
an

d
th

eir
m

en
u

item
s.

3.1 The Rcmdr-menus.txt File 15

FIGURE 3.2: The R Commander File menu and its Exit sub-menu.

operation/parent In the case of a menu definition, this is the name of the parent menu
to which the menu belongs. For a top-level menu like fileMenu, the parent is topMenu.
For the sub-menu exitMenu, the parent is fileMenu.

Otherwise, one of three operations is specified:

command The resulting menu item will dispatch a callback function. For example, the
second menu directive defines a menu item that dispatches the function Setwd()

(see the explanation of command/menu below).

cascade The menu directive inserts a menu or sub-menu (and associated menu items)
under its parent. For example, the penultimate menu directive in Figure 3.1 inserts
the Exit menu under the File menu, and the last line inserts the File menu in the
menu-bar.

A limitation of the current implementation of the R Commander menu system is that
you can only cascade a plug-in menu under an existing R Commander top-level menu
or submenu. This restriction prevents you from creating submenus of your own top-
level menus or submenus. I hope to remove this limitation in a future release of the
Rcmdr package.

separator A horizontal separator is inserted into the corresponding menu. Separators
are used to group related items (and sub-menus). For example, there are separators
demarcating the three items in the File menu relating to script files.

label The text to be displayed for a menu item or menu. Conventionally, this text ends in
ellipses (...) if the corresponding menu item leads to a dialog box.

command/menu In the case of a command operation, this is the name of the callback function
corresponding to the menu item. Callback functions are defined in the Rcmdr package
and are not exported from the package’s namespace. For example, the second directive

16 3 R Commander and Plug-in Menus

Figure 3.1 creates a menu item that calls the Setwd() function, and the fourth directive
an item that calls the loadLog() function, both of which are defined by the Rcmdr
package.

In a plug-in package, in contrast, it’s necessary to export callback functions defined by the
package so that the R Commander can find them when it builds the menus (see Section 2.4).

This field has a special (optional) use for a separator: To allow for more precise menu-
separator placement in plug-in packages, the field can be used to indicate the menu or
command after which the separator is to appear. In rare cases—when two menu items
use the same callback function command—this will produce ambiguity, in which case the
separator will be placed after the last such item.

activation This is an R expression, given as a character string, that should evaluate to
TRUE or FALSE. If the expression evaluates to FALSE, then the corresponding menu item
is inactive—i.e., grayed out. The empty string "" is treated as unconditionally TRUE, and
so all of the menu items in the File menu are always active.

The Rcmdr package defines and exports specialized predicate functions for testing par-
ticular conditions. For example, factorsP() returns TRUE if there are any factors in the
active data set and FALSE otherwise, while factorsP(2) returns TRUE if there are two or
more factors in the active data set.

We’ll see examples of conditional activation in Section 3.2.2, when we examine the
menus.txt files for the RcmdrPlugin.survival package.1

install? An R expression, also given as a character string, that causes the corresponding
menu or menu item to be installed if the expression evaluates to TRUE or to be suppressed
if it evaluates to FALSE. Again, the empty character string "" is treated as unconditionally
TRUE. Thus, the Exit and File menus, and many of the menu items under these menus,
are installed in any event, but some menu items are installed only if the R Markdown or
knitr Document tabs are in use.2

Menu directives are processed in order, and the sequence of directives must therefore
make sense. For example, a menu (e.g., fileMenu in Figure 3.1) must be defined before
menu items can be placed in it; and the menu items should be placed in the menu before
the menu is installed under its parent via a cascade operation.

3.2 The menus.txt File for an R Commander Plug-in Package

When the R Commander loads a plug-in package, it restarts the R Commander interface.
The menu directives in the plug-in’s menus.txt file are processed after the directives in
Rcmdr-menus.txt, although the R Commander is careful to merge the plug-in’s directives
with the R Commander menus in a sensible manner. If several plug-ins are loaded, they are
processed sequentially.3

1Also see Section A.4 in Appendix A for a complete list of R Commander predicate functions.
2Recall (Fox, 2017, Section 3.3.6.2) that by default the R Commander constructs an R Markdown document

to create a report of the current session, and that a knitr LATEX document may be constructed optionally. The
use of the getRcmdr() function for retrieving state information is described in Section 4.2 and Section A.1
in Appendix A.

3Although each plug-in package will work individually if it is written properly, different plug-ins aren’t
necessarily compatible with each other, and compatibility may depend on the order in which the plug-ins

3.2 The menus.txt File for an R Commander Plug-in Package 17

Figures 3.3 and 3.5 show the menus.txt files for the RcmdrPlugin.TeachingDemos
and RcmdrPlugin.survival packages; I edited these files slightly for clarity (but the con-
tent of the menu directives wasn’t changed). Figures 3.4 and 3.6 show the modifications
and additions that the two plug-ins make to the R Commander menus.

3.2.1 The RcmdrPlugin.TeachingDemos Package

I originally developed the RcmdrPlugin.TeachingDemos package to demonstrate the
process of writing an R Commander plug-in (see Fox, 2007). It is the simpler of the two
packages, and so I will start with it. The RcmdrPlugin.TeachingDemos package uses the
TeachingDemos package (Snow, 2016) to create a variety of demonstrations appropriate
for a basic statistics course.

The first three menu directives in the menus.txt file for the RcmdrPlu-
gin.TeachingDemos plug-in package remove three menu items from the standard R Com-
mander menus, items for plotting the normal, t, and gamma distributions. The fourth menu
directive removes the entire Discrete distributions sub-menu from the R Commander Distri-
butions menu. To know what the removed items—normalDistributionPlot, tDistribu-
tionPlot, gammaDistributionPlot, and discreteMenu—represent, you have to examine
the R Commander Rcmdr-menus.txt file.

The ostensible rationale for deleting the three distribution-plot menu items (and,
less credibly, the entire Discrete distributions sub-menu) is that the RcmdrPlu-
gin.TeachingDemos package provides superior replacements, but the real reason is to
demonstrate how to delete menu items and menus. To editorialize slightly, I urge you to
think carefully about whether you really want to remove standard R Commander menus or
menu items. Doing so may confuse your users and make your plug-in incompatible with
other R Commander plug-ins. A good reason to remove an R Commander menu item, how-
ever, is if you think that you have a superior replacement for it that will be installed in the
same menu and with the same label as the standard menu item.

Continuing with the menus.txt file, the next few lines define a new Demos top-level
menu, define several menu items under this menu (Central limit theorem. . . , Confidence
interval for the mean. . . , etc.), and install the Demos menu in the menu-bar.

The final block of menu directives creates a new Visualize distributions sub-menu under
the R Commander Distributions menu; defines several menu items for visualizing various
distributions (Binomial distribution, etc.); and installs the Visualize distributions sub-menu
under Distributions.

The various callback functions—centralLimitTheorem(), simulateConfidenceInter-
vals(), and so on—are defined in the RcmdrPlugin.TeachingDemos package (as dis-
cussed in Chapter 4). As is apparent from the "" entry in the activation field of each menu
directive, all of the menu-items are always active. The packageAvailable() function, used
in the install? field, is provided by the Rcmdr package (see Appendix A), and returns
TRUE if the TeachingDemos package is installed in the user’s library and FALSE if it is
not.4

are loaded. For example, if an earlier plug-in removes a menu into which a later plug-in tries to install a
menu item, then an error will result.

4Because the TeachingDemos package is a dependency of the RcmdrPlugin.TeachingDemos pack-
age, the former is unlikely to be absent if the latter is present.

18 3 R Commander and Plug-in Menus

#
m
e
n
u
s

f
o
r

t
h
e

R
c
m
d
r
P
l
u
g
i
n
.
T
e
a
c
h
i
n
g
D
e
m
o
s

p
a
c
k
a
g
e

#
l
a
s
t

m
o
d
i
f
i
e
d
:

2
2

J
u
l
y

2
0
0
8

b
y

J
.

F
o
x

#
t
y
p
e

m
e
n
u
/
i
t
e
m

o
p
e
r
a
t
i
o
n
/
p
a
r
e
n
t

l
a
b
e
l

c
o
m
m
a
n
d
/
m
e
n
u

a
c
t
i
v
a
t
i
o
n

i
n
s
t
a
l
l
?

r
e
m
o
v
e

n
o
r
m
a
l
D
i
s
t
r
i
b
u
t
i
o
n
P
l
o
t

"
"

"
"

"
"

"
"

"
"

r
e
m
o
v
e

t
D
i
s
t
r
i
b
u
t
i
o
n
P
l
o
t

"
"

"
"

"
"

"
"

"
"

r
e
m
o
v
e

g
a
m
m
a
D
i
s
t
r
i
b
u
t
i
o
n
P
l
o
t

"
"

"
"

"
"

"
"

"
"

r
e
m
o
v
e

d
i
s
c
r
e
t
e
M
e
n
u

"
"

"
"

"
"

"
"

"
"

m
e
n
u

d
e
m
o
s
M
e
n
u

t
o
p
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
C
e
n
t
r
a
l

l
i
m
i
t

t
h
e
o
r
e
m
.
.
.
"

c
e
n
t
r
a
l
L
i
m
i
t
T
h
e
o
r
e
m

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
f
i
d
e
n
c
e

i
n
t
e
r
v
a
l

f
o
r

t
h
e

m
e
a
n
.
.
.
"

s
i
m
u
l
a
t
e
C
o
n
f
i
d
e
n
c
e
I
n
t
e
r
v
a
l
s

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
P
o
w
e
r

o
f

t
h
e

t
e
s
t
"

p
o
w
e
r
E
x
a
m
p
l
e

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
F
l
i
p

a
c
o
i
n
"

f
l
i
p
C
o
i
n

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
R
o
l
l

a
d
i
e
"

r
o
l
l
D
i
e

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
S
i
m
p
l
e

l
i
n
e
a
r

r
e
g
r
e
s
s
i
o
n
"

l
i
n
e
a
r
R
e
g
r
e
s
s
i
o
n
E
x
a
m
p
l
e

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
e
m
o
s
M
e
n
u

c
o
m
m
a
n
d

"
S
i
m
p
l
e

c
o
r
r
e
l
a
t
i
o
n
"

c
o
r
r
e
l
a
t
i
o
n
E
x
a
m
p
l
e

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

t
o
p
M
e
n
u

c
a
s
c
a
d
e

"
D
e
m
o
s
"

d
e
m
o
s
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

m
e
n
u

v
i
s
u
a
l
M
e
n
u

d
i
s
t
r
i
b
u
t
i
o
n
s
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

v
i
s
u
a
l
M
e
n
u

c
o
m
m
a
n
d

"
B
i
n
o
m
i
a
l

d
i
s
t
r
i
b
u
t
i
o
n
s
"

v
i
s
B
i
n
o
m

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

v
i
s
u
a
l
M
e
n
u

c
o
m
m
a
n
d

"
N
o
r
m
a
l

d
i
s
t
r
i
b
u
t
i
o
n
s
"

v
i
s
N
o
r
m
a
l

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

v
i
s
u
a
l
M
e
n
u

c
o
m
m
a
n
d

"
t

d
i
s
t
r
i
b
u
t
i
o
n
s
"

v
i
s
t

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

v
i
s
u
a
l
M
e
n
u

c
o
m
m
a
n
d

"
G
a
m
m
a

d
i
s
t
r
i
b
u
t
i
o
n
s
"

v
i
s
G
a
m
m
a

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

i
t
e
m

d
i
s
t
r
i
b
u
t
i
o
n
s
M
e
n
u

c
a
s
c
a
d
e

"
V
i
s
u
a
l
i
z
e

d
i
s
t
r
i
b
u
t
i
o
n
s
"

v
i
s
u
a
l
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
T
e
a
c
h
i
n
g
D
e
m
o
s
'
)
"

F
IG

U
R

E
3
.3

:
T

h
e
m
e
n
u
s
.
t
x
t

fi
le

for
th

e
R
c
m
d
rP

lu
g
in
.T

e
a
ch

in
g
D
e
m
o
s

p
a
cka

g
e,

version
1.1-0

(sligh
tly

ed
ited

).

3.2 The menus.txt File for an R Commander Plug-in Package 19

FIGURE 3.4: The Demos and Distributions > Visualize distributions menus after loading
the RcmdrPlugin.TeachingDemos package. Notice that the Discrete distributions sub-
menu is gone from the Distributions menu.

3.2.2 The RcmdrPlugin.survival Package

The RcmdrPlugin.survival package (Fox and Carvalho, 2012) was developed for a more
serious purpose: to provide a graphical user interface to many of the facilities of the survival
package (Therneau and Grambsch, 2000; Therneau, 2015), which is state-of-the-art software
for survival analysis and part of the standard R distribution.

As can be seen in Figures 3.5 and 3.6, the menus.txt file for the RcmdrPlugin.survival
package:

� Creates a new Survival analysis sub-menu under the R Commander Statistics top-level
menu and a new Survival data sub-menu under the R Commander Data top-level menu.
Each of these new menus includes three menu-items.

� Places new menu items for Cox regression and parametric survival regression under the
R Commander Statistics > Fit models menu, preceded by a menu separator.

� Places a new menu item to test for proportional hazards under the R Commander Models
> Numerical diagnostics menu, preceded by a separator.

� Defines several new menu items under the R Commander Models > Graphs menu, preceded
by a separator.

The various callback functions for the new menu items are defined in the RcmdrPlu-
gin.survival package (as discussed in Chapter 4).

Four of the predicate functions used for menu activation and installation are defined in
the Rcmdr package (see Section A.4 in Appendix A for details):

� activeDataSetP() returns TRUE if there is an active data set and FALSE otherwise.

� factorsP() returns TRUE if there are one or more factors in the current data set and
FALSE if there are no factors.

� packageAvailable(’survival’) returns TRUE if the survival package is in the user’s
library and FALSE otherwise. (Because the survival package is part of the R distribution,
it would be very odd for it to be missing!)

� modelCapability() is used for items in the R Commander Models menu, and is discussed
in Section 5.3.

The other predicates used for menu-item activation are provided by the RcmdrPlu-
gin.survival package:

20 3 R Commander and Plug-in Menus

#
m
e
n
u
s

f
o
r

t
h
e

R
c
m
d
r
P
l
u
g
i
n
.
s
u
r
v
i
v
a
l

p
a
c
k
a
g
e

#
l
a
s
t

m
o
d
i
f
i
e
d
:

2
0
1
7
-
0
1
-
3
1

b
y

J
.

F
o
x

#
t
y
p
e

m
e
n
u
/
i
t
e
m

o
p
e
r
a
t
i
o
n
/
p
a
r
e
n
t

l
a
b
e
l

c
o
m
m
a
n
d
/
m
e
n
u

a
c
t
i
v
a
t
i
o
n

i
n
s
t
a
l
l
?

m
e
n
u

s
u
r
v
i
v
a
l
M
e
n
u

s
t
a
t
i
s
t
i
c
s
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

s
u
r
v
i
v
a
l
M
e
n
u

c
o
m
m
a
n
d

"
E
s
t
i
m
a
t
e

s
u
r
v
i
v
a
l

f
u
n
c
t
i
o
n
.
.
.
"

S
u
r
v
f
i
t

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
i
v
a
l
M
e
n
u

c
o
m
m
a
n
d

"
C
o
m
p
a
r
e

s
u
r
v
i
v
a
l

f
u
n
c
t
i
o
n
s
.
.
.
"

S
u
r
v
d
i
f
f

"
f
a
c
t
o
r
s
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
i
s
t
i
c
s
M
e
n
u

c
a
s
c
a
d
e

"
S
u
r
v
i
v
a
l

a
n
a
l
y
s
i
s
"

s
u
r
v
i
v
a
l
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

m
e
n
u

s
u
r
v
D
a
t
a
M
e
n
u

d
a
t
a
M
e
n
u

"
"

"
"

"
"

"
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
S
u
r
v
i
v
a
l

d
a
t
a

d
e
f
i
n
i
t
i
o
n
.
.
.
"

S
u
r
v
i
v
a
l
D
a
t
a

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
v
e
r
t

w
i
d
e

t
o

l
o
n
g

d
a
t
a
.
.
.
"

U
n
f
o
l
d

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
u
r
v
D
a
t
a
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
v
e
r
t

v
a
r
i
a
b
l
e

t
o

d
a
t
e
.
.
.
"

t
o
D
a
t
e

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

d
a
t
a
M
e
n
u

c
a
s
c
a
d
e

"
S
u
r
v
i
v
a
l

d
a
t
a
"

s
u
r
v
D
a
t
a
M
e
n
u

"
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
M
o
d
e
l
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

s
t
a
t
M
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x

r
e
g
r
e
s
s
i
o
n

m
o
d
e
l
.
.
.
"

C
o
x
M
o
d
e
l

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

s
t
a
t
M
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
P
a
r
a
m
e
t
r
i
c

s
u
r
v
i
v
a
l

m
o
d
e
l
.
.
.
"

s
u
r
v
r
e
g
M
o
d
e
l

"
a
c
t
i
v
e
D
a
t
a
S
e
t
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
T
e
s
t

p
r
o
p
o
r
t
i
o
n
a
l

h
a
z
a
r
d
s
"

C
o
x
Z
P
H

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
t
p
h
'
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x
-
m
o
d
e
l

s
u
r
v
i
v
a
l

f
u
n
c
t
i
o
n
.
.
.
"

P
l
o
t
C
o
x
p
h

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

t
e
r
m
s

i
n

C
o
x

m
o
d
e
l
"

T
e
r
m
P
l
o
t
s

"
c
o
x
p
h
P
(
)

&
&

!
h
i
g
h
O
r
d
e
r
T
e
r
m
s
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

s
u
r
v
i
v
a
l
-
r
e
g
r
e
s
s
i
o
n

d
f
b
e
t
a
s
"

C
o
x
D
f
b
e
t
a
s

"
c
o
x
p
h
P
(
)

|
|

s
u
r
v
r
e
g
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

s
u
r
v
i
v
a
l
-
r
e
g
r
e
s
s
i
o
n

d
f
b
e
t
a
"

C
o
x
D
f
b
e
t
a

"
c
o
x
p
h
P
(
)

|
|

s
u
r
v
r
e
g
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
P
l
o
t

n
u
l
l

M
a
r
t
i
n
g
a
l
e

r
e
s
i
d
u
a
l
s
"

M
a
r
t
i
n
g
a
l
e
P
l
o
t
s

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
x
-
m
o
d
e
l

p
a
r
t
i
a
l
-
r
e
s
i
d
u
a
l

p
l
o
t
s
"

P
a
r
t
i
a
l
R
e
s
P
l
o
t
s

"
c
o
x
p
h
P
(
)
"

"
p
a
c
k
a
g
e
A
v
a
i
l
a
b
l
e
(
'
s
u
r
v
i
v
a
l
'
)
"

F
IG

U
R

E
3.5:

T
h

e
m
e
n
u
s
.
t
x
t

fi
le

fo
r

th
e
R
c
m
d
rP

lu
g
in
.su

rv
iv
a
l

p
a
cka

g
e,

versio
n

1.1-1
(sligh

tly
ed

ited
).

3.2 The menus.txt File for an R Commander Plug-in Package 21

FIGURE 3.6: Additions to the R Commander menus by the RcmdrPlugin.survival pack-
age.

22 3 R Commander and Plug-in Menus

� coxphP() returns TRUE if the current statistical model is a Cox model, and FALSE

otherwise—i.e., if there is no current model or if the current model is of a different class.

� survregP() returns TRUE if the current model is a parametric survival regression model
and FALSE otherwise.

� highOrderTermsP() returns TRUE if the current model includes interactions and FALSE if
it is additive.

4

Building R Commander Dialog Boxes

Constructing Tcl/Tk dialog boxes is substantially more complicated than specifying R Com-
mander menus. As explained in the preceding chapter, selecting an R Commander or plug-in
menu item dispatches a callback function—an R function that is called with no arguments.
Normally, a callback function either composes and executes an R command within the R
Commander (a process described in this chapter), or brings up a Tcl/Tk dialog.

As a formal matter, however, a callback function can be any argument-less R function,
raising the possibility, for example, of using a GUI-builder in R other than Tcl/Tk (see, e.g.,
Lawrence and Verzani, 2012) to construct a dialog box called from the R Commander. That
said, there are several arguments in favor of sticking with Tcl/Tk:

1. The tcltk package is part of the standard R distribution, and on Windows and Mac
OS X systems, Tcl/Tk is installed along with R. It’s therefore generally simple to
get Tcl/Tk-based GUIs to work in R, which, in my experience, is not necessarily
true of other GUI toolkits. This is why I employed Tcl/Tk for the R Commander.

2. Using Tcl/Tk will make your dialog boxes appear similar to the R Commander
dialogs. Uniformity in appearance is desirable aesthetically and is less likely to
confuse users.

3. The Rcmdr package includes many utility functions (described in this and the
next chapter, and in Appendex A) to assist you in constructing dialogs using
Tcl/Tk, including for initializing and finalizing dialogs, adding OK , Cancel , Help,
Apply , and Reset buttons, creating related sets of radio buttons and check boxes,
and so on.

In the balance of this chapter, I’ll explain the process of constructing plug-in dialog
boxes using dialog-building functions from the R Commander package as illustrations. I’ll also
explain how the R Commander stores and retrieves state information, and how R Commander
dialogs interact with the R interpreter.

4.1 Examples of R Commander Dialogs

A reasonable strategy for creating your own dialogs is to find similar R Commander dialogs
and modify the functions in the R Commander package that build them—that is, treat the R
Commander dialog-building functions as “templates” or points of departure for your dialogs.
You can locate the callback function in the Rcmdr package sources for a particular dialog
of interest by examining the Rcmdr-menus.txt file, as described in the preceding chapter.

23

24 4 Building R Commander Dialog Boxes

FIGURE 4.1: The R Commander Load Packages dialog box.

4.1.1 Load Packages: A Simple Dialog With Basic Buttons

I’ll begin with a very simple example: Figure 4.1 shows the Load Packages dialog, dispatched
from the R Commander menus via Tools > Load package(s)... . The user completes the
dialog by selecting one or more packages from the listbox in the usual manner (by, recall,
some combination of left-clicking, Ctrl -clicking, and Shift-clicking) and then clicks the OK
button. Clicking OK without selecting one or more packages prints an error message in the
R Commander Messages pane and reopens the Load Packages dialog.

Alternatively, the user may dismiss the dialog by clicking either the Cancel button or the
X in its upper-right-hand corner. Finally, clicking the Help button brings up the help page
for the library() command in the user’s default web browser, leaving the Load Packages
dialog open.

Figure 4.2 shows the loadPackages() callback function that creates the dialog box in
Figure 4.1:

� Like all callback functions, loadPackages() has no arguments.

� Called without any arguments, the standard R function .library() returns the names of
currently attached packages; called with the argument all.available=TRUE, it returns
the names of all packages in the user’s library (or libraries). Consequently, the variable
availablePackages is a character vector of names of packages not currently attached.

If availablePackages is empty, there are no additional packages to load; loadPack-

ages() calls the errorCondition() function to print an error message in the R Comman-
der Messages pane and stops without creating the Load Packages dialog box.

� Otherwise, loadPackages() calls initializeDialog(), which has one required argu-
ment (title, which should be specified by name) and several optional arguments. We’ll
encounter some of these arguments later in this chapter.1. The initializeDialog() util-
ity performs several operations, including creating a top-level Tk widget, named top by
default.

1As is generally the case for the dialog-box utility functions discussed in this chapter, to see all of the
arguments of initializeDialog(), consult Appendix A, use the command args(initializeDialog), or
examine the ?Rcmdr.Utilities help page.

4.1 Examples of R Commander Dialogs 25

loadPackages <- function(){

availablePackages <- sort(setdiff(.packages(all.available=TRUE), .packages()))

if (length(availablePackages) == 0){

errorCondition(message=gettextRcmdr("No packages available to load."))

return()

}

initializeDialog(title=gettextRcmdr("Load Packages"))

packagesBox <- variableListBox(top, availablePackages,

title=gettextRcmdr("Packages (pick one or more)"),

selectmode="multiple", listHeight=10)

onOK <- function(){

packages <- getSelection(packagesBox)

closeDialog(top)

if (length(packages) == 0){

errorCondition(recall=loadPackages,

message=gettextRcmdr("You must select at least one package."))

return()

}

for (package in packages) {

Library(package)

}

Message(paste(gettextRcmdr("Packages loaded:"),

paste(packages, collapse=", ")), type="note")

}

OKCancelHelp(helpSubject="library")

tkgrid(getFrame(packagesBox), sticky="nw")

tkgrid(buttonsFrame, sticky="w")

dialogSuffix()

}

FIGURE 4.2: The loadPackages() callback function, which creates the Load Packages
dialog. The code is edited slightly for clarity.

26 4 Building R Commander Dialog Boxes

� As its name suggests, variableListBox() creates a Tk listbox, which it returns in an
object of class "listbox". variableListBox() has two required arguments: Its first argu-
ment, parentWindow, which can be given by position (and is top here); and the argument
title, which should be specified by name.

The second argument to variableListBox(), variableList, is a vector of character
strings comprising the entries of the listbox. Here, that’s the vector availablePackages;
the default is Variables(), which returns the names of the variables in the active data
set.

The argument selectmode="multiple" allows the user to select more than one entry in
the listbox; the default is selectmode="single".

Finally, listHeight=10 specifies that up to 10 packages will be displayed in the list-
box window; if there are more than 10 available packages, as is almost surely the
case, the vertical scrollbar for the listbox will be activated. The default is lis-

tHeight=getRcmdr("variable.list.height"), which is the number of values specified
by the R Commander variable.list.height option (and is 6 by default).2

� The argument-less local function onOK() determines what happens when the user presses
the OK button in the dialog. Then getSelection(packagesBox) returns a character
string of selected package names, and the call to closeDialog(top) closes the dialog box.

If no packages are selected, then errorCondition() prints an error message, and the
argument recall=loadPackages reinvokes the loadPackages() function to redisplay the
dialog.

Otherwise, the R Commander Library() utility function is called for each selected package
to load; Library(), in turn, generates calls to the standard library() function. Finally,
a message (of type="note") is printed in the R Commander Messages pane, indicating
the packages that were loaded.

� The lines after the definition of onOK() complete the specification of the dialog: The call
to OKCancelHelp() creates the OK, Cancel, and Help buttons for the dialog; there are no
required arguments to OKCancelHelp(), but to include a Help button it’s necessary to give
the helpSubject argument, here helpSubject="library", so pressing the Help button
executes the command help("library"), bringing up the help page for the library()

command.

The calls to the tcltk function tkgrid() place the packages listbox and the OK , Cancel ,
and Help buttons in the dialog box. Here, getFrame(packagesBox) returns the Tk frame
widget containing the packages listbox, and buttonsFrame is the frame widget containing
the buttons, which was created by OKCancelHelp().

The call to dialogSuffix(), which has no required arguments, completes the specification
of the dialog box.

� A note about the function gettextRcmdr(): You’ll no doubt have noticed that that all
text-sting messages in the loadPackages() function are embedded in a call to the get-

textRcmdr() function. The R Commander uses GNU gettext to translate English messages
into other languages, a process that’s supported by R (see Ripley, 2005). Unless you wish
to provide a similar translation facility for your plug-in package, you can simply supply
messages directly as character strings (and ignore the calls to gettextRcmdr() in this and
subsequent examples).

2See Section 4.2 on storing and retrieving R Commander state information.

4.1 Examples of R Commander Dialogs 27

FIGURE 4.3: The R Commander Correlation Test dialog box.

Several of the R Commander utilities used in this example are “macro-like” in their be-
havior, in that, unlike ordinary R functions (which are lexically scoped), they can modify
the environment of the function that calls them, here loadPackages(). For example, ini-
tializeDialog() creates the object top containing the top-level widget for the dialog box,
and OKCancelHelp() creates the frame widget buttonsFrame, both of which are referenced
by loadPackages(). This non-standard behavior is convenient to cope with scoping issues
that arise in using the tcltk package. Macro-like R Commander utilities are marked as such
in Appendix A.3

4.1.2 Correlation Test : A Dialog With Radio Buttons and That Saves
Its State

Figure 4.3 shows the R Commander Correlation Test dialog, produced by the menu selection
Statistics > Summaries > Correlation test..., with Duncan (the Duncan occupational pres-
tige data—see, e.g., Section 4.2.2 in the text) as the active data set. I selected the variables
education and income in the variable listbox. Some of the elements of this dialog box are
now familiar, such as the listbox, but others are new:

� There are two sets of radio buttons—to select the type of correlation to be computed and
the alternative hypothesis.

� In addition to OK , Cancel , and Help buttons, the dialog includes Reset and Apply buttons.

The code for the the correlationTest() callback function, which creates the Corre-
lation Test dialog, is given in Figure 4.4.4 We encountered some of the functions used to
construct this dialog in the preceding section—for example, initializeDialog(), vari-
ableListBox(), OKCancelHelp(), and dialogSuffix(). I’ll comment here only on argu-
ments to these functions that weren’t used previously. Other functions employed in corre-

lationTest() are new, such as getDialog(), radioButtons(), and putDialog().

3R Commander macros are created using a slightly modified version of Thomas Lumley’s defmacro()

function (Lumley, 2001).
4The correlationTest() function was originally contributed by Stefano Calza and subsequently modified

by me.

28 4 Building R Commander Dialog Boxes

correlationTest <- function(){

defaults <- list(initial.x=NULL, initial.correlations="pearson",

initial.alternative="two.sided")

dialog.values <- getDialog("correlationTest", defaults)

initializeDialog(title=gettextRcmdr("Correlation Test"))

xBox <- variableListBox(top, Numeric(), selectmode="multiple",

title=gettextRcmdr("Variables (pick two)"),

initialSelection=varPosn(dialog.values$initial.x, "numeric"))

optionsFrame <- tkframe(top)

radioButtons(optionsFrame, name="correlations",

buttons=c("pearson", "spearman", "kendall"),

labels=gettextRcmdr(c("Pearson product-moment",

"Spearman rank-order", "Kendall's tau")),

initialValue=dialog.values$initial.correlations,

title=gettextRcmdr("Type of Correlation"))

radioButtons(optionsFrame, name="alternative",

buttons=c("two.sided", "less", "greater"),

values=c("two.sided", "less", "greater"),

initialValue=dialog.values$initial.alternative,

labels=gettextRcmdr(c("Two-sided", "Correlation < 0", "Correlation > 0")),

title=gettextRcmdr("Alternative Hypothesis"))

onOK <- function(){

alternative <- tclvalue(alternativeVariable)

correlations <- tclvalue(correlationsVariable)

x <- getSelection(xBox)

putDialog("correlationTest", list(initial.alternative=alternative,

initial.correlations=correlations, initial.x=x))

if (2 > length(x)) {

errorCondition(recall=correlationTest,

message=gettextRcmdr("Fewer than 2 variables selected."))

return()

}

if(2 < length(x)) {

errorCondition(recall=correlationTest,

message=gettextRcmdr("More than 2 variables selected."))

return()

}

closeDialog()

.activeDataSet <- ActiveDataSet()

command <- paste("with(", .activeDataSet, ", cor.test(", x[1], ", ", x[2],

', alternative="', alternative, '", method="', correlations, '"))',

sep="")

doItAndPrint(command)

tkfocus(CommanderWindow())

}

OKCancelHelp(helpSubject="cor.test", reset="correlationTest", apply="correlationTest")

tkgrid(getFrame(xBox), sticky="nw")

tkgrid(labelRcmdr(top, text=""))

tkgrid(correlationsFrame, labelRcmdr(optionsFrame, text=" "),

alternativeFrame, sticky="w")

tkgrid(optionsFrame, sticky="w")

tkgrid(buttonsFrame, sticky="w")

dialogSuffix()

}

FIGURE 4.4: The correlationTest() callback function, which creates the Correlation
Test dialog. The code is slightly edited.

4.1 Examples of R Commander Dialogs 29

� R Commander dialog boxes can store state information that’s preserved from one invo-
cation of the dialog to the next.5 The first command in the function establishes defaults
for the initial, unused state of the dialog—in this instance, the variables selected in the
listbox (NULL implies no initial selection) and the initial choices for the two sets of radio
buttons. The getDialog() function takes the name of the dialog-generating function as
its first argument6 and the list of defaults as its second argument, and returns stored
values if these exist and the defaults if no values are stored.

� In the call to variableListBox(), Numeric() returns a character vector with the names
of the numeric variables in the current data set. The initialSelection argument indi-
cates which (if any) variables are initially selected in the listbox. These are taken from
dialog.values$initial.x (which, recall, starts out as NULL), with the function var-

Posn() translating the name of each such variable into its position within the vector of
numeric variable names (indicated by the second argument, "numeric", to varPosn()).

� A Tk frame widget, named optionsFrame, is created to hold the two sets of radio but-
tons, which in turn are created by the R Commander radioButtons() utility. This is a
macro-like function that constructs a set of related radio buttons along with the Tcl/Tk
infrastructure that supports them; the function doesn’t return a useful value, but rather
creates objects in the environment of the calling function, correlationTest().

The name argument establishes a name for the set of radio buttons, buttons provides
names for the several buttons, labels specifies text labels for the buttons, which can (as
here) be distinct from the names of the buttons, and title supplies a title for the set of
radio buttons.

The initialValue argument indicates which radio button is selected when the dialog
opens, and this selection is taken from the list of initial values.

� As is typical, the local onOK() function is invoked when the user presses the OK button
(or the Apply button) in the dialog.

The Tcl variables alternativeVariable and correlationVariable were implicitly cre-
ated by the calls to radioButtons() and hold the values of the currently selected radio
buttons. These are extracted via the tcltk function tclvalue().

The call to putDialog() stores the current selections in the dialog so that these will be
used as initial values if and when the dialog is reopened.7

The ActiveDataSet() function returns the name of the active data set, which is used to
compose a command in the form of a character string. For example, clicking OK in the
dialog box in Figure 4.3 produces the command

with(Prestige, cor.test(education, income, alternative="two.sided",

method="pearson"))

This command is passed to the doItAndPrint() function which enters the command
in the R Commander R Script and R Markdown tabs, and causes the command to be
executed, directing the command and any printed output that results to the Output pane.

5See Section 4.2 for further information about how the R Commander saves state information.
6Actually, this is the name used by putDialog() (see below) to store the state information for the dialog,

which by convention I set to the name of the callback function that creates the dialog.
7Recall that dialog state information is erased when the active data set changes or when the Reset button

in the dialog is pressed by the user.

30 4 Building R Commander Dialog Boxes

If the command produces error or warning messages, these appear in the R Commander
Messages pane.8

� The call to OKCancelHelp() includes the arguments reset="correlationTest" and ap-

ply="correlationTest", creating the Reset and Apply buttons in the dialog box. The
first of these arguments causes state information saved under "correlationTest" to be
deleted when the Reset argument is pressed, and the dialog to reopen in its pristine state.
The second argument specifies that correlationTest() is to be recalled, reopening the
dialog, when the Apply button is pressed, after onOK() is executed.

� Tk frame widgets for the sets of radio buttons inside optionsFrame are created automat-
ically by the radioButtons() macro, and are automatically named correlationsFrame

and alternativeFrame.

4.1.3 Two-Way Table: A Tabbed Dialog

In this section, I describe the twoWayTable() callback function, which creates the tabbed
R Commander Two-Way Table dialog, reachable through Statistics > Contingency tables >
Two-way table.... The dialog box includes two tabs, Data and Statistics, both of which are
illustrated in Figure 4.5.

The active data set is the Adler data on experimenter effects in psychological research,
used in Section 6.1.3 of the text to illustrate two-way analysis of variance. Selecting expec-

tation as the row variable for the table, instruction as the column variable, and leaving
the Statistics tab in its default state, produces the commands and associated output in
Figure 4.6.

In addition to tabs, the Two-Way Table dialog illustrates two features that we haven’t
encountered previously:

� The Data tab includes an R Commander Subset expression text-box widget.

� The Statistics tab includes a set of check boxes.

In discussing the callback function that generates the dialog, shown in Figure 4.7, I’ll stress
these new features, and pass over those that we’ve seen previously. The code for this function
is long, and is spread over three pages, but much of it is devoted to composing the text for
the commands that the dialog generates. I’ll pass over this part of the callback function as
well.

The tabs in the Two-Way Table dialog are produced by the argument useTabs=TRUE

in the call to initializeDialog() (in the first part of Figure 4.7). The names of the
two tabs are given implicitly by the default value of the tabs argument, which is tabs =

c("dataTab", "optionsTab"). To create tabs with different names, or to create more than
two tabs, specify the tabs argument explicitly. Tk widgets can be placed in the tabs by
making reference to dataTab and optionsTab; for example,

variablesFrame <- tkframe(dataTab)

creates a frame within the Data tab to hold the two variable listboxes in the dialog. In
addition to creating the two tabs, initializeDialog() constructs a Tk notebook widget
to contain them. The default name of this notebook (given by the notebook argument to
initializeDialog()) is notebook.

The displayed titles of the tabs are given in the call to dialogSuffix() at the very
end of the callback function twoWayTable() (i.e., in the third part of Figure 4.7), and are
distinct from the object-names of the tabs:

8For more information about how the R Commander interacts with the R interpreter, see Section 4.3.

4.1 Examples of R Commander Dialogs 31

FIGURE 4.5: The Data and Statistics tabs in the Two-Way Table dialog.

32 4 Building R Commander Dialog Boxes

> local({

+ .Table <- xtabs(∼expectation+instruction, data=Adler)

+ cat("\nFrequency table:\n")

+ print(.Table)

+ .Test <- chisq.test(.Table, correct=FALSE)

+ print(.Test)

+ })

Frequency table:

instruction

expectation GOOD NONE SCIENTIFIC

HIGH 15 16 18

LOW 17 18 13

Pearson's Chi-squared test

data: .Table

X-squared = 1.0389, df = 2, p-value = 0.5948

FIGURE 4.6: Commands and output produced by the Two-Way Table dialog.

dialogSuffix(use.tabs=TRUE, grid.buttons=TRUE,

tab.names=c("Data", "Statistics"))

Thus the displayed name or label "Data" corresponds to dataTab and the displayed name
"Statistics" corresponds to optionsTab. Notice that it’s necessary to include the argu-
ment use.tabs=TRUE and grid.buttons=TRUE. The latter insures that the standard dialog
buttons (OK , Cancel , and so on) appear properly below the tabs.9 The tabs.names argu-
ment to dialogSuffix() is necessary here because the default displayed names for the two
tabs are "Data" and "Options".

The state information saved for the dialog includes the number of the tab (0 or 1—
Tcl uses zero-based indexing) that’s currently displayed. The default is initial.tab=0,
that is, the Data tab. The name initial.tab must be used in the list of initial values
because it’s employed by dialogSuffix(), which as a macro-like function, has access
to local variables in the environment of twoWayTable(). The currently visible tab is re-
trieved by if (as.character(tkselect(notebook)) == dataTab$ID) 0 else 1 in the
local onOK() function.

The call to subsetBox() creates a text box inside dataTab, with frame, title Subset
expression, and initial contents <all valid cases>. The Tcl variable subsetVariable re-
ports the contents of the Subset expression text box when the user presses the OK or Apply
button in the dialog.

As mentioned, another new feature of the Two-Way Table dialog is the set of check
boxes, which are created by the checkBoxes() R Commander utility macro function. Usage
of this function is similar in many respects to radioButtons():

� Unlike radio buttons, however, check boxes are independent of one-another, in that each
may be checked or unchecked. Consequently, each check box has its own initial value,

9It may appear as if the grid.buttons argument is redundant, in that its value may be inferred from
use.tabs=TRUE, but this is not the case due to scoping issues arising in macro-like functions such as di-

alogSuffix().

4.1 Examples of R Commander Dialogs 33

twoWayTable <- function(){

Library("abind")

defaults <- list(initial.row=NULL, initial.column=NULL,

initial.percents="none", initial.chisq=1, initial.chisqComp=0, initial.expected=0,

initial.fisher=0, initial.subset=gettextRcmdr("<all valid cases>"), initial.tab=0)

dialog.values <- getDialog("twoWayTable", defaults)

initializeDialog(title=gettextRcmdr("Two-Way Table"), use.tabs=TRUE)

variablesFrame <- tkframe(dataTab)

.factors <- Factors()

rowBox <- variableListBox(variablesFrame, .factors,

title=gettextRcmdr("Row variable (pick one)"),

initialSelection=varPosn(dialog.values$initial.row, "factor"))

columnBox <- variableListBox(variablesFrame, .factors,

title=gettextRcmdr("Column variable (pick one)"),

initialSelection=varPosn(dialog.values$initial.column, "factor"))

subsetBox(dataTab, subset.expression=dialog.values$initial.subset)

onOK <- function(){

tab <- if (as.character(tkselect(notebook)) == dataTab$ID) 0 else 1

row <- getSelection(rowBox)

column <- getSelection(columnBox)

percents <- tclvalue(percentsVariable)

chisq <- tclvalue(chisqTestVariable)

chisqComp <- tclvalue(chisqComponentsVariable)

expected <- tclvalue(expFreqVariable)

fisher <- tclvalue(fisherTestVariable)

initial.subset <- subset <- tclvalue(subsetVariable)

subset <- if (trim.blanks(subset) == gettextRcmdr("<all valid cases>")) ""

else paste(", subset=", subset, sep="")

putDialog("twoWayTable", list(

initial.row=row,

initial.column=column,

initial.percents=percents, initial.chisq=chisq, initial.chisqComp=chisqComp,

initial.expected=expected, initial.fisher=fisher, initial.subset=initial.subset,

initial.tab=tab))

if (length(row) == 0 || length(column) == 0){

errorCondition(recall=twoWayTable,

message=gettextRcmdr("You must select two variables."))

return()

}

if (row == column) {

errorCondition(recall=twoWayTable,

message=gettextRcmdr("Row and column variables are the same."))

return()

}

closeDialog()

FIGURE 4.7: The twoWayTable() callback function (part 1)

34 4 Building R Commander Dialog Boxes

command <- paste("local({\n .Table <- xtabs(∼", row, "+", column, ",

data=", ActiveDataSet(), subset,

')\n cat("\\nFrequency table:\\n")\n print(.Table)', sep="")

command.2 <- paste("local({\n .warn <- options(warn=-1)\n

.Table <- xtabs(∼", row, "+", column, ", data=", ActiveDataSet(),

subset, ")", sep="")

if (percents == "row")

command <- paste(command,

'\n cat("\\nRow percentages:\\n")\n print(rowPercents(.Table))',

sep="")

else if (percents == "column")

command <- paste(command,

'\n cat("\\nColumn percentages:\\n")\n print(colPercents(.Table))', sep="")

else if (percents == "total")

command <- paste(command,

'\n cat("\\nTotal percentages:\\n")\n print(totPercents(.Table))', sep="")

if (chisq == 1) {

command <- paste(command,

"\n .Test <- chisq.test(.Table, correct=FALSE)", sep="")

command.2 <- paste(command.2,

"\n .Test <- chisq.test(.Table, correct=FALSE)", sep="")

command <- paste(command, "\n print(.Test)", sep="")

if (expected == 1)

command <- paste(command,

'\n cat("\\nExpected counts:\\n")\n print(.Test$expected)', sep="")

if (chisqComp == 1) {

command <- paste(command,

'\n cat("\\nChi-square components:\\n")\n print(round(.Test$residuals^2, 2))',

sep="")

}

}

if (fisher == 1) command <- paste(command, "\n print(fisher.test(.Table))")

command <- paste(command, "\n})", sep="")

doItAndPrint(command)

if (chisq == 1){

command.2 <- paste(command.2,

"\nputRcmdr('.expected.counts', .Test$expected)\n options(.warn)\n})")

justDoIt(command.2)

warnText <- NULL

expected <- getRcmdr(".expected.counts")

if (0 < (nlt1 <- sum(expected < 1)))

warnText <- paste(nlt1,

gettextRcmdr("expected frequencies are less than 1"))

if (0 < (nlt5 <- sum(expected < 5)))

warnText <- paste(warnText, "\n", nlt5,

gettextRcmdr(" expected frequencies are less than 5"), sep="")

if (!is.null(warnText)) Message(message=warnText, type="warning")

}

tkfocus(CommanderWindow())

}

FIGURE 4.7: The twoWayTable() callback function (part 2)

4.1 Examples of R Commander Dialogs 35

OKCancelHelp(helpSubject="xtabs", reset="twoWayTable", apply="twoWayTable")

radioButtons(optionsTab, name="percents",

buttons=c("rowPercents", "columnPercents", "totalPercents", "nonePercents"),

values=c("row", "column", "total", "none"),

initialValue=dialog.values$initial.percents,

labels=gettextRcmdr(c("Row percentages", "Column percentages",

"Percentages of total", "No percentages")),

title=gettextRcmdr("Compute Percentages"))

checkBoxes(optionsTab, frame="testsFrame", boxes=c("chisqTest", "chisqComponents",

"expFreq", "fisherTest"),

initialValues=c(dialog.values$initial.chisq, dialog.values$initial.chisqComp,

dialog.values$initial.expected, dialog.values$initial.fisher),

labels=gettextRcmdr(c("Chi-square test of independence",

"Components of chi-square statistic",

"Print expected frequencies", "Fisher's exact test")))

tkgrid(getFrame(rowBox), labelRcmdr(variablesFrame, text=" "),

getFrame(columnBox), sticky="nw")

tkgrid(variablesFrame, sticky="w")

tkgrid(percentsFrame, sticky="w")

tkgrid(labelRcmdr(optionsTab, text=gettextRcmdr("Hypothesis Tests"),

fg=getRcmdr("title.color"), font="RcmdrTitleFont"), sticky="w")

tkgrid(testsFrame, sticky="w")

tkgrid(subsetFrame, sticky="w")

dialogSuffix(use.tabs=TRUE, grid.buttons=TRUE, tab.names=c("Data", "Statistics"))

}

FIGURE 4.7: The twoWayTable() callback function (part 3, concluded).

36 4 Building R Commander Dialog Boxes

FIGURE 4.8: The Reorder Factor Levels main dialog (left) and Reorder Levels sub-dialog
(right).

given by the initialValues argument to checkBoxes(), where 1 means checked and 0

unchecked.

� Each check box is given a name via the boxes argument to checkBoxes(), with an as-
sociated Tcl variable indicting the current state of the check box. Thus, for example,
tclvalue(chisqTestVariable) is 1 (actually, "1") if the chisqTest check box is checked
and 0 if it’s unchecked.

� The frame argument to checkBoxes() provides a name (here "testsFrame") for the Tk
frame containing the check boxes, which is used by tkgrid() to place the set of check
boxes and their title in the dialog.

4.1.4 Reorder Factor Levels: A Dialog With a Subdialog

Shown at the left of Figure 4.8, the Reorder Factor Levels dialog is a simple untabbed
dialog with a variable listbox, a text box for the name of the factor to be created, and a
single checkbox, unchecked by default, to make the new variable an ordered factor. In the
illustrative dialog, I click on instruction to select it in the variable listbox.

All of the elements of the Reorder Factor Levels dialog are familiar, although the sin-
gle check box uses the Tk themed widget function ttkcheckbutton() directly rather than
calling the R Commander checkBoxes() macro.10 The code for the callback function re-

orderFactor(), which creates the dialog, appears in Figure 4.9, which is divided across two
pages. The most important new feature of this dialog is that it invokes a sub-dialog when
the user clicks the OK button.

As before, I’ll concentrate on the as-yet unfamiliar features of the reorderFactor()

callback function:

� In the local onOK() function, the command

old.levels <- eval(parse(text=paste("levels(", .activeDataSet,

"$", variable, ")", sep="")), envir=.GlobalEnv)

10As a general matter, the R Commander uses Tk themed widgets supplied by the tcltk package, when
they are available, and picks themes that are compatible with the various computing platforms (Windows,
Mac OS X, Linux/Unix). In the tcltk package, functions producing themed widgets have names beginning
begin with “ttk.”

4.1 Examples of R Commander Dialogs 37

reorderFactor <- function(){

initializeDialog(title=gettextRcmdr("Reorder Factor Levels"))

variableBox <- variableListBox(top, Factors(),

title=gettextRcmdr("Factor (pick one)"))

orderedFrame <- tkframe(top)

orderedVariable <- tclVar("0")

orderedCheckBox <- ttkcheckbutton(orderedFrame, variable=orderedVariable)

factorName <- tclVar(gettextRcmdr("<same as original>"))

factorNameField <- ttkentry(top, width="20", textvariable=factorName)

onOK <- function(){

variable <- getSelection(variableBox)

closeDialog()

if (length(variable) == 0) {

errorCondition(recall=reorderFactor,

message=gettextRcmdr("You must select a variable."))

return()

}

name <- trim.blanks(tclvalue(factorName))

if (name == gettextRcmdr("<same as original>")) name <- variable

if (!is.valid.name(name)){

errorCondition(recall=reorderFactor,

message=paste('"', name, '" ',

gettextRcmdr("is not a valid name."), sep=""))

return()

}

if (is.element(name, Variables())) {

if ("no" == tclvalue(checkReplace(name))){

reorderFactor()

return()

}

}

.activeDataSet <- ActiveDataSet()

old.levels <- eval(parse(text=paste("levels(", .activeDataSet, "$", variable, ")",

sep="")), envir=.GlobalEnv)

nvalues <- length(old.levels)

ordered <- tclvalue(orderedVariable)

if (nvalues > 30) {

errorCondition(recall=reorderFactor,

message=sprintf(gettextRcmdr("Number of levels (%d) too large."),

nvalues))

return()

}

FIGURE 4.9: The reorderFactor() callback function (part 1). The code for the function
is edited slightly.

38 4 Building R Commander Dialog Boxes

initializeDialog(subdialog, title=gettextRcmdr("Reorder Levels"))

order <- 1:nvalues

onOKsub <- function() {

closeDialog(subdialog)

opt <- options(warn=-1)

for (i in 1:nvalues){

order[i] <- as.numeric(eval(parse(text=paste("tclvalue(levelOrder", i, ")",

sep=""))))

}

options(opt)

if (any(sort(order) != 1:nvalues) || any(is.na(order))){

errorCondition(recall=reorderFactor,

message=paste(gettextRcmdr("Order of levels must include all integers from 1 to "),

nvalues, sep=""))

return()

}

levels <- old.levels[order(order)]

ordered <- if (ordered == "1") ", ordered=TRUE" else ""

command <- paste("with(", .activeDataSet, ", factor(", variable,

", levels=c(", paste(paste("'", levels, "'", sep=""),

collapse=","), ")",

ordered, "))", sep="")

result <- justDoIt(paste(.activeDataSet, "$", name, " <- ", command, sep=""))

logger(paste(.activeDataSet,"$", name," <- ", command, sep=""))

if (class(result)[1] != "try-error") activeDataSet(.activeDataSet,

flushModel=FALSE, flushDialogMemory=FALSE)

}

subOKCancelHelp()

tkgrid(labelRcmdr(subdialog, text=gettextRcmdr("Old Levels"),

fg=getRcmdr("title.color"), font="RcmdrTitleFont"),

labelRcmdr(subdialog, text=gettextRcmdr("New order"),

fg=getRcmdr("title.color"), font="RcmdrTitleFont"), sticky="w")

for (i in 1:nvalues){

valVar <- paste("levelOrder", i, sep="")

assign(valVar, tclVar(i))

assign(paste("entry", i, sep=""), ttkentry(subdialog, width="2",

textvariable=get(valVar)))

tkgrid(labelRcmdr(subdialog, text=old.levels[i]),

get(paste("entry", i, sep="")), sticky="w")

}

tkgrid(subButtonsFrame, sticky="w", columnspan=2)

dialogSuffix(subdialog, focus=entry1, force.wait=TRUE)

}

OKCancelHelp(helpSubject="factor")

tkgrid(getFrame(variableBox), sticky="nw")

tkgrid(labelRcmdr(top, text=gettextRcmdr("Name for factor")), sticky="w")

tkgrid(factorNameField, sticky="w")

tkgrid(orderedCheckBox, labelRcmdr(orderedFrame,

text=gettextRcmdr("Make ordered factor")), sticky="w")

tkgrid(orderedFrame, sticky="w")

tkgrid(buttonsFrame, sticky="w")

dialogSuffix(preventGrabFocus=TRUE)

}

FIGURE 4.9: The reorderFactor() callback function (part 2, concluded).

4.1 Examples of R Commander Dialogs 39

returns a vector of level names for the factor to be recoded. These levels are used in the
sub-dialog box (at the right of Figure 4.8).

� The sub-dialog is constructed within onOK(), in much the same manner as a menu-item
callback function:

– The function initializeDialog() is used in the same way as in the main dialog,
except that rather than letting the name of the top-level Tk window default to top,
I specify subdialog in the first argument to initializeDialog().

– The local function onOKsub(), defined similarly to onOK(), is invoked when the user
presses the OK button in the sub-dialog.

– The R Commander utility subOKCancelHelp() is used to create the OK and Cancel
buttons in the sub-dialog. Because the helpSubject argument is absent, no Help
button is supplied.

– The command

tkgrid(subButtonsFrame, sticky="w", columnspan=2)

inserts the OK and Cancel buttons into the sub-dialog; and the command

dialogSuffix(subdialog, focus=entry1, force.wait=TRUE)

places the cursor in the first text-entry field in the New order column, and, by
force.wait=TRUE, causes the main-dialog code to wait until the sub-dialog is closed,
allowing the main dialog to compose the command to change the order of the factor
levels based on the values that the user enters into the sub-dialog (as illustrated in
Figure 4.10).

� The creation of the table in the sub-dialog, showing the Old levels of the factor in the
first column and the corresponding New order of the factor levels in the second column,
is a bit tricky; the code for this table is in the loop

for (i in 1:nvalues){

valVar <- paste("levelOrder", i, sep="")

assign(valVar, tclVar(i))

assign(paste("entry", i, sep=""), ttkentry(subdialog, width="2",

textvariable=get(valVar)))

tkgrid(labelRcmdr(subdialog, text=old.levels[i]),

get(paste("entry", i, sep="")), sticky="w")

}

– Each time through the loop, valVar holds the name of a Tcl variable to be created;
e.g., when the loop index i is 1, this variable is named "levelOrder1", and it is
assigned the value 1 (more generally i) via the call to tclVar(i).

– Similarly, the variable named "entry1" is assigned a themed Tk entry widget for
which "levelOrder1" is the associated Tcl variable.

– The call to tkgrid() within the loop inserts each line of the table into the sub-dialog
box.

40 4 Building R Commander Dialog Boxes

> Adler$instruction <- with(Adler, factor(instruction, levels=c('GOOD',

+ 'SCIENTIFIC','NONE')))

FIGURE 4.10: Command generated by the Reorder Factor Levels dialog.

� In onOKsub(), the loop

for (i in 1:nvalues){

order[i] <- as.numeric(eval(parse(text=

paste("tclvalue(levelOrder", i, ")", sep=""))))

}

extracts the new order of the factor levels from the Tcl variables levelOrder1, level-
Order2, etc.

� Because the Adler data set is modified, onOK() executives the command

activeDataSet(.activeDataSet, flushModel=FALSE, flushDialogMemory=FALSE)

to refresh the active data set (where .activeDataSet holds the name of the active data set,
"Adler"). Here, flushModel=FALSE, flushDialogMemory=FALSE avoids clearing (“flush-
ing”) the active statistical model (if there is one) and the saved states of dialogs, as hap-
pens by default when the active data set changes. These operations are unnecessary, and
undesirable, when the only change is to the order of the levels of a factor.

4.1.5 Histogram: A Dialog That Uses the R Commander Plot by Widget

The final illustrative dialog, Histogram, shown in Figure 4.11, demonstrates the use of the R
Commander Plot by button-widget, provided by the groupsBox() utility. Figure 4.11 shows
an example of the dialog using the Adler data set. Because there’s only one numeric variable
in the data set, rating, it’s preselected in the variable listbox at the top of the figure, which
shows the initial state of the dialog. Pressing the Plot by groups... button brings up the sub-
dialog in the center of the figure. Selecting instruction in the Groups variable list and
clicking OK in the Groups sub-dialog changes the button in the main dialog to Plot by:
instruction, as shown at the bottom of the figure. Clicking OK in the main dialog produces
the group-wise histograms at the bottom of Figure 4.12.

The code for the callback function Histogram() appears in Figure 4.13, which is spread
across three pages, but the snippet of code producing the Plot by button is very simple,
and mostly self-explanatory:

groupsBox(Histogram, initialGroup=initial.group,

initialLabel=if (is.null(initial.group)) gettextRcmdr("Plot by groups")

else paste(gettextRcmdr("Plot by:"), initial.group), window=dataTab)

The first argument, recall, set to Histogram, causes Histogram() to be recalled to reopen
the dialog if there’s an error. The groupsBox() macro assigns the groups-variable selection
to the variable .groups in the environment of Histogram(), setting this variable to FALSE

if no groups-variable is selected. The variable .groups is then used to compose a call to the
Hist() function, shown at the top of Figure 4.12.

4.1 Examples of R Commander Dialogs 41

FIGURE 4.11: Histogram dialog box: initial state (top); Groups sub-dialog (center); after
groups selection (botton). Only the Data tab in the main dialog is shown.

42 4 Building R Commander Dialog Boxes

> with(Adler, Hist(rating, groups=instruction, scale="frequency",

+ breaks="Sturges", col="darkgray"))

instruction = GOOD

rating

fr
eq

ue
nc

y

−40 −20 0 20 40

0
5

10
15

instruction = SCIENTIFIC

rating

fr
eq

ue
nc

y

−40 −20 0 20 40

0
5

10
15

instruction = NONE

rating

fr
eq

ue
nc

y

−40 −20 0 20 40

0
5

10
15

FIGURE 4.12: Hist() command (top) and histograms by group (bottom) produced by the
Histogram dialog.

4.1 Examples of R Commander Dialogs 43

Histogram <- function () {

defaults <- list(initial.x = NULL, initial.scale = "frequency",

initial.bins = gettextRcmdr ("<auto>"), initial.tab=0,

initial.xlab=gettextRcmdr("<auto>"), initial.ylab=gettextRcmdr("<auto>"),

initial.main=gettextRcmdr("<auto>"), initial.group = NULL)

dialog.values <- getDialog("Histogram", defaults)

initializeDialog(title = gettextRcmdr("Histogram"), use.tabs=TRUE)

xBox <- variableListBox(dataTab, Numeric(), title = gettextRcmdr("Variable (pick one)"),

initialSelection = varPosn (dialog.values$initial.x, "numeric"))

initial.group <- dialog.values$initial.group

.groups <- if (is.null(initial.group)) FALSE else initial.group

onOK <- function() {

tab <- if (as.character(tkselect(notebook)) == dataTab$ID) 0 else 1

x <- getSelection(xBox)

closeDialog()

if (length(x) == 0) {

errorCondition(recall = Histogram,

message = gettextRcmdr("You must select a variable"))

return()

}

bins <- tclvalue(binsVariable)

opts <- options(warn = -1)

binstext <- if (bins == gettextRcmdr("<auto>"))

"\"Sturges\""

else as.numeric(bins)

options(opts)

scale <- tclvalue(scaleVariable)

xlab <- trim.blanks(tclvalue(xlabVar))

xlab <- if (xlab == gettextRcmdr("<auto>"))

""

else paste(", xlab=\"", xlab, "\"", sep = "")

ylab <- trim.blanks(tclvalue(ylabVar))

ylab <- if (ylab == gettextRcmdr("<auto>"))

""

else paste(", ylab=\"", ylab, "\"", sep = "")

main <- trim.blanks(tclvalue(mainVar))

main <- if (main == gettextRcmdr("<auto>"))

""

else paste(", main=\"", main, "\"", sep = "")

putDialog ("Histogram", list (initial.x = x, initial.bins = bins,

initial.scale = scale,

initial.tab=tab, initial.xlab=tclvalue(xlabVar),

initial.ylab = tclvalue(ylabVar),

initial.main = tclvalue(mainVar),

initial.group=if (.groups == FALSE) NULL else .groups))

FIGURE 4.13: The Histogram() callback function (part 1). The function is edited slightly.

44 4 Building R Commander Dialog Boxes

if (is.null(.groups) || .groups == FALSE) {

command <- paste("with(", ActiveDataSet(), ",

Hist(", x, ', scale="', scale, '", breaks=',

binstext, ', col="darkgray"', xlab, ylab, main, "))", sep="")

}

else{

command <- paste("with(", ActiveDataSet(),

", Hist(", x, ", groups=", .groups, ', scale="',

scale, '", breaks=', binstext, ', col="darkgray"',

xlab, ylab, main, "))", sep="")

}

doItAndPrint(command)

activateMenus()

tkfocus(CommanderWindow())

}

groupsBox(Histogram, initialGroup=initial.group,

initialLabel=if (is.null(initial.group)) gettextRcmdr("Plot by groups")

else paste(gettextRcmdr("Plot by:"), initial.group), window=dataTab)

OKCancelHelp(helpSubject = "Hist", reset = "Histogram", apply="Histogram")

optionsFrame <- tkframe(optionsTab)

optFrame <- ttklabelframe(optionsFrame, labelwidget=tklabel(optionsFrame,

text = gettextRcmdr("Plot Options"),

font="RcmdrTitleFont", foreground=getRcmdr("title.color")))

parFrame <- ttklabelframe(optionsFrame, labelwidget=tklabel(optionsFrame,

text = gettextRcmdr("Plot Labels"),

font="RcmdrTitleFont", foreground=getRcmdr("title.color")))

xlabVar <- tclVar(dialog.values$initial.xlab)

ylabVar <- tclVar(dialog.values$initial.ylab)

mainVar <- tclVar(dialog.values$initial.main)

xlabEntry <- ttkentry(parFrame, width = "25", textvariable = xlabVar)

xlabScroll <- ttkscrollbar(parFrame, orient = "horizontal",

command = function(...) tkxview(xlabEntry, ...))

tkconfigure(xlabEntry, xscrollcommand = function(...) tkset(xlabScroll,

...))

tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("x-axis label")),

xlabEntry, sticky = "ew", padx=6)

tkgrid(labelRcmdr(parFrame, text =""), xlabScroll, sticky = "ew", padx=6)

ylabEntry <- ttkentry(parFrame, width = "25", textvariable = ylabVar)

ylabScroll <- ttkscrollbar(parFrame, orient = "horizontal",

command = function(...) tkxview(ylabEntry, ...))

tkconfigure(ylabEntry, xscrollcommand = function(...) tkset(ylabScroll,

...))

tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("y-axis label")),

ylabEntry, sticky = "ew", padx=6)

tkgrid(labelRcmdr(parFrame, text =""), ylabScroll, sticky = "ew", padx=6)

FIGURE 4.13: The Histogram() callback function (part 2).

4.1 Examples of R Commander Dialogs 45

mainEntry <- ttkentry(parFrame, width = "25", textvariable = mainVar)

mainScroll <- ttkscrollbar(parFrame, orient = "horizontal",

command = function(...) tkxview(mainEntry, ...))

tkconfigure(mainEntry, xscrollcommand = function(...) tkset(mainScroll,

...))

tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("Graph title")),

mainEntry, sticky = "ew", padx=6)

tkgrid(labelRcmdr(parFrame, text=""), mainScroll, sticky = "ew", padx=6)

axisFrame <- tkframe(optFrame)

radioButtons(axisFrame, name = "scale", buttons = c("frequency", "percent",

"density"), labels = gettextRcmdr(c("Frequency counts",

"Percentages", "Densities")), title = gettextRcmdr("Axis Scaling"),

initialValue = dialog.values$initial.scale)

binsFrame <- tkframe(optFrame)

binsVariable <- tclVar(dialog.values$initial.bins)

binsField <- ttkentry(binsFrame, width = "8", textvariable = binsVariable)

tkgrid(getFrame(xBox), sticky = "nw")

tkgrid(groupsFrame, sticky = "w")

tkgrid(labelRcmdr(binsFrame, text = gettextRcmdr("Number of bins: ")),

binsField, sticky = "w")

tkgrid(binsFrame, sticky = "w")

tkgrid(scaleFrame, sticky = "w")

tkgrid(axisFrame, sticky = "w")

tkgrid.configure(binsField, sticky = "e")

tkgrid(optFrame, parFrame, sticky = "nswe", padx=6, pady=6)

tkgrid(optionsFrame, sticky = "w")

dialogSuffix(use.tabs=TRUE, grid.buttons=TRUE)

}

FIGURE 4.13: The Histogram() callback function (part 3, concluded).

46 4 Building R Commander Dialog Boxes

4.2 Saving and Retrieving State Information

The R Commander saves a variety state information in the .RcmdrEnv environment, which
isn’t exported from the Rcmdr package. As I’ll explain, however, you can interact with
this environment through a number of functions that can retrieve information from the
.RcmdrEnv environment and can place information in it.

The specific contents of .RcmdrEnv will vary from session to session. Currently, as I’m
writing this chapter, the environment contains the following objects:

> objects(envir=Rcmdr:::.RcmdrEnv, all.names=TRUE)

[1] ".activeDataSet" ".activeModel"

[3] ".expected.counts" "ask.on.exit"

[5] "ask.to.exit" "attach.data.set"

[7] "autoRestart" "cancelDialogReopen"

[9] "capabilities" "command.text.color"

[11] "commanderWindow" "commandStack"

[13] "console.output" "crisp.dialogs"

[15] "dataSetLabel" "dataSetName"

[17] "default.contrasts" "default.font.family"

[19] "default.font.size" "dialog.values"

[21] "dialog.values.noreset" "double.click"

[23] "editDataset.threshold" "error.text.color"

[25] "etc" "etcMenus"

[27] "factors" "grab.focus"

[29] "help_type" "Identify3d"

[31] "installed.packages" "knitr.editor.open"

[33] "knitr.output" "last.message"

[35] "last.search" "length.command.stack"

[37] "length.output.stack" "log.commands"

[39] "log.font.family" "log.font.size"

[41] "log.height" "log.text.color"

[43] "log.width" "logFileName"

[45] "logFont" "logWindow"

[47] "Markdown.editor.open" "markdown.output"

[49] "Menus" "messageNumber"

[51] "messages.height" "messagesWindow"

[53] "modelClasses" "modelLabel"

[55] "modelName" "modelNumber"

[57] "multiple.select.mode" "ncol"

[59] "nrow" "number.messages"

[61] "numeric" "open.dialog.here"

[63] "open.showData.windows" "output.height"

[65] "output.text.color" "outputFileName"

[67] "outputStack" "outputWindow"

[69] "prefixes" "quit.R.on.close"

[71] "quotes" "RcmdrVersion"

[73] "reset.model" "restore.device"

[75] "restore.help_type" "restoreTab"

[77] "retain.messages" "retain.selections"

[79] "rgl" "rgl.command"

4.2 Saving and Retrieving State Information 47

[81] "rmd.generated" "rmd.output.format"

[83] "rmd.template" "RmdFileName"

[85] "RmdWindow" "rnw.generated"

[87] "rnw.template" "RnwFileName"

[89] "RnwWindow" "RStudio"

[91] "savedTable" "saveFileName"

[93] "saveOptions" "showData.threshold"

[95] "sort.names" "startNewCommandBlock"

[97] "startNewKnitrCommandBlock" "suppress.icon.images"

[99] "suppress.menus" "suppress.X11.warnings"

[101] "tagNumber" "theme"

[103] "title.color" "tkwait.dialog"

[105] "twoLevelFactors" "use.knitr"

[107] "use.markdown" "use.rgl"

[109] "variable.list.height" "variable.list.width"

[111] "variables" "warning.text.color"

Some of these objects originate in the initialization of the R Commander and are pos-
sibly influenced by the user, who can set R Commander options (via the R command
options(Rcmdr=list(etc.))). For example,

> get("ask.to.exit", envir=Rcmdr:::.RcmdrEnv)

[1] TRUE

indicates that when the user selects File > Exit > from Commander or clicks the X at the
upper-right of the main R Commander window, an Exit dialog will open asking the user to
confirm.

A better way to access objects in the .RcmdrEnv environment is through the function
getRcmdr():

> getRcmdr("ask.to.exit")

[1] TRUE

Similarly, putRcmdr() may be used to save arbitrary objects in the .RcmdrEnv environ-
ment; for example:

> putRcmdr("foo", "bar")

> getRcmdr("foo")

[1] "bar"

You should exercise some care to avoid name clashes when you place information in
.RcmdrEnv, because you don’t want to “clobber” (overwrite) an object that’s already there:

� You could prefix saved objects with the name of your plug-in package; for example,

> putRcmdr("RcmdrPlugin.foo_bar", "baz")

� You could maintain a list of saved information; for example (assuming that the list Rcm-
drPlugin.foo already exists in .RcmdrEnv):

> RcmdrPlugin.foo <- getRcmdr("RcmdrPlugin.foo")

> RcmdrPlugin.foo$bar <- "baz"

> putRcmdr("RcmdrPlugin.foo")

� Finally, and perhaps most elegantly, you could maintain an unexported environment in
your package, similar to Rcmdr:::.RcmdrEnv, for storing state information.

48 4 Building R Commander Dialog Boxes

Some of the information stored in .RcmdrEnv pertains to the active data set, and is
most conveniently retrieved by specialized accessor functions, some of which we’ve already
encountered. For example, Variables() returns the names of all of the variables in the
active data set, Factors() returns the names of the factors in the active data set, and
Numeric() returns the names of the numeric variables in the active data set. Similarly,
ActiveDataSet() returns the name of the active data set (or NULL if there is no active data
set).

If they are called with an argument, these functions also serve to modify the state in-
formation for the active set. For example, ActiveDataSet("Prestige") changes the active
data set to Prestige (and also resets the information about the variables in the active data
set), if the Prestige data set resides in memory, and generates an error if it does not.

Saved state information about dialogs is stored in dialog.values as a list of lists, one
sub-list for each dialog whose state is saved. Currently, for example:

> getRcmdr("dialog.values")

$Histogram

$Histogram$initial.x

[1] "rating"

$Histogram$initial.bins

[1] "<auto>"

$Histogram$initial.scale

[1] "frequency"

$Histogram$initial.tab

[1] 0

$Histogram$initial.xlab

[1] "<auto>"

$Histogram$initial.ylab

[1] "<auto>"

$Histogram$initial.main

[1] "<auto>"

$Histogram$initial.group

[1] "instruction"

Here, the outer list has only one element, for the Histogram dialog, reflecting the current
R Commander session. More typically, state information would be saved for several dialogs.
As we have seen, this information is normally retrieved by getDialog() and stored by
putDialog(); for example:

> getDialog("Histogram")

$initial.x

[1] "rating"

$initial.bins

[1] "<auto>"

$initial.scale

4.3 How the R Commander Interacts With the R Interpreter 49

[1] "frequency"

$initial.tab

[1] 0

$initial.xlab

[1] "<auto>"

$initial.ylab

[1] "<auto>"

$initial.main

[1] "<auto>"

$initial.group

[1] "instruction"

> getDialog("twoWayTable") # no state info currently saved

NULL

You’ll find complete information about the available R Commander accessor functions in
Appendix A.

4.3 How the R Commander Interacts With the R Interpreter

As we have seen, R Commander dialogs typically interact with the R interpreter by generating
commands in the form of character strings, causing the commands to be executed by calling
the function doItAndPrint(). Composing commands as character strings can be awkward,
but it is a flexible arrangement.

The doItAndPrint() function has three arguments:

command is a character string containing the command to be executed. If the command is
spread over several lines, each line (but the last) should end with a newline chararacter
(i.e., "\n").

log is a logical value, TRUE by default, indicating whether the command should be entered
(“logged”) into the R Commander R Script tab and in the R Commander Output pane,
along with the printed output that it produces (which appears in any event in the Output
pane).

rmd (for “R Markdown”) is a logical value, defaulting to the value of log, controlling
whether the command is to be entered into the R Commander R Markdown and knitr
tabs (if these tabs exist).

50 4 Building R Commander Dialog Boxes

It’s normal to use doItAndPrint() for most commands generated by R Commander or
plug-in dialogs, and it’s rare to want to set log or rmd to FALSE. Output produced by the
command is directed to the R Commander Output pane, and error and warning messages to
the Messages pane.

In addition to doItAndPrint(), your dialog can call the justDoIt() or logger() func-
tions. As for doItAndPrint(), the command argument to justDoIt() is an R command
given as a character string. As its name implies, however, justDoIt() executes the com-
mand without entering it, or any associated output, into the R Script tab, the R Markdown
tab, the knitr tab, or the Output pane. In contrast, the logger() function prints its com-

mand argument in the R Script tab, the R Markdown tab, the knitr tab, and the Output
pane without actually executing the command. The logger() function has an optional ar-
gument, rmd, which defaults to TRUE, and which has the same effect as the rmd argument
to doItAndPrint().

5

Handling Statistical Models in R Commander
Plug-in Packages

There are special considerations associated with building statistical modeling dialogs for the
R Commander, partly to incorporate R model formulas in the dialogs, and partly to work
properly with the menu items of the Models menu that reference an active statistical model.
I’ll explain in this chapter how statistical models are handled by the R Commander, primarily
using the Linear Model dialog to illustrate, but also referencing the Cox-Regression Model
dialog from the RcmdrPlugin.survival package. The latter example demonstrates how a
plug-in package can add a class of statistical model objects to the R Commander and specify
their treatment in the R Commander Models menu.

Subsequent sections of the chapter discuss the R Commander Models menu and the
RcmdrModels: field in the plug-in package DESCRIPTION file.

5.1 The Linear Model Dialog

The R Commander Linear Model dialog exemplifies the implementation of a statistical mod-
eling dialog using various R Commander utility functions, including the modelFormula()

function. The dialog (whose use is described in Section 7.2 and 7.3 of the text) appears
in Figure 5.1. The linearModel() callback function, invoked by Statistics > Fit models >
Linear model..., is shown in Figure 5.2 (which is divided over two pages).

The active data set in the Linear Model dialog in Figure 5.1 is the Prestige data (intro-
duced in Section 4.2.2 of the text). To build the model formula in the dialog, I double-click
on prestige in the variable listbox, double-click on type, (single-)click on education and
then on the natural spline button, and finally click on income and the natural spline but-
ton. The other selections in the dialog—the name of the model, the spinners for splines and
polynomials, and the Subset expression and Weights text boxes—are left at their defaults.

Many of the elements of the linearModel() callback function in Figure 5.2 are familiar,
and, as has become my habit, I won’t dwell on these, but rather will describe what’s new:

� The linearModel() function largely bypasses the standard R Commander mechanism for
preserving dialog-box state, which uses the functions getDialog() and putDialog(). The
reason for this is historical, and it would be better to use the standard mechanism for a
new statistical modeling dialog.

The first few lines of the function, for example, reuse the formula from the previous sta-
tistical model, if it is a linear model. Similarly, the stored value reset.model is employed
for the Reset button in the dialog box. It would currently be simpler to use getDialog()

and putDialog() for these purposes. I retained the existing code in the Rcmdr package
mainly to honor the advice that “if it ain’t broke, don’t fix it.”

51

52 5 Handling Statistical Models in R Commander Plug-in Packages

FIGURE 5.1: The R Commander Linear Model dialog box, specifying a model for the Pres-

tige data.

� The R Commander numbers statistical models serially through a session. Call-
ing UpdateModelNumber() increments the current model number by 1, and getR-

cmdr("modelNumber") retrieves the current model number.

Notice that when errorCondition() is called in the local onOK() function for the dialog,
the argument model is set to TRUE. This causes the model number to be decremented
before the dialog is reopened, preventing numbers from being skipped.

� The key step in constructing the Linear Model dialog is the call to the modelFormula()

macro; because all of the defaults are used in the dialog, modelFormula() is called without
any arguments.

modelFormula() provides the variable listbox, button bars, and left-hand-side and right-
hand-side formula text boxes in the dialog. These elements are placed in the dialog box
using tkgrid() with getFrame(xBox) for the variable listbox, outerOperatorsFrame for
the button bars, and formulaFrame for the model formula.

� Weight-variable selection is implemented with a Tk combo box (i.e., a drop-down list, here
of numeric variables), produced by the R Commander variableComboBox() macro, and
the Subset expression text box is provided by the R Commander subsetBox() macro.

� The call to the OKCancelHelp() macro to produce the buttons at the bottom of the dialog
is standard, with one exception: The recall argument is set to "resetLinearModel"

rather than to the callback function "linearModel" directly. This is necessary to handle
the nonstandard manner in which the dialog saves its state and isn’t something to emulate.

5.1 The Linear Model Dialog 53

linearModel <- function(){

initializeDialog(title=gettextRcmdr("Linear Model"))

defaults <- list(initial.weight = gettextRcmdr("<no variable selected>"))

dialog.values <- getDialog("linearModel", defaults)

.activeModel <- ActiveModel()

currentModel <- if (!is.null(.activeModel))

class(get(.activeModel, envir=.GlobalEnv))[1] == "lm"

else FALSE

if (currentModel) {

currentFields <- formulaFields(get(.activeModel, envir=.GlobalEnv))

if (currentFields$data != ActiveDataSet()) currentModel <- FALSE

}

if (isTRUE(getRcmdr("reset.model"))) {

currentModel <- FALSE

putRcmdr("reset.model", FALSE)

}

UpdateModelNumber()

modelName <- tclVar(paste("LinearModel.", getRcmdr("modelNumber"), sep=""))

modelFrame <- tkframe(top)

model <- ttkentry(modelFrame, width="20", textvariable=modelName)

onOK <- function(){

modelValue <- trim.blanks(tclvalue(modelName))

closeDialog()

if (!is.valid.name(modelValue)){

errorCondition(recall=linearModel,

message=sprintf(gettextRcmdr('"%s" is not a valid name.'), modelValue),

model=TRUE)

return()

}

subset <- tclvalue(subsetVariable)

if (trim.blanks(subset) ==

gettextRcmdr("<all valid cases>") || trim.blanks(subset) == ""){

subset <- ""

putRcmdr("modelWithSubset", FALSE)

}

else{

subset <- paste(", subset=", subset, sep="")

putRcmdr("modelWithSubset", TRUE)

}

weight.var <- getSelection(weightComboBox)

putDialog("linearModel", list(initial.weight = weight.var))

weights <- if (weight.var == gettextRcmdr("<no variable selected>")) ""

else paste(", weights=", weight.var, sep="")

FIGURE 5.2: The linearModel() callback function, slightly edited for clarity (part 1)

54 5 Handling Statistical Models in R Commander Plug-in Packages

check.empty <- gsub(" ", "", tclvalue(lhsVariable))

if ("" == check.empty) {

errorCondition(recall=linearModel,

message=gettextRcmdr("Left-hand side of model empty."), model=TRUE)

return()

}

check.empty <- gsub(" ", "", tclvalue(rhsVariable))

if ("" == check.empty) {

errorCondition(recall=linearModel,

message=gettextRcmdr("Right-hand side of model empty."), model=TRUE)

return()

}

if (is.element(modelValue, listLinearModels())) {

if ("no" == tclvalue(checkReplace(modelValue, type=gettextRcmdr("Model")))){

UpdateModelNumber(-1)

linearModel()

return()

}

}

formula <- paste(tclvalue(lhsVariable), tclvalue(rhsVariable), sep=" ∼ ")

command <- paste("lm(", formula,

", data=", ActiveDataSet(), subset, weights, ")", sep="")

doItAndPrint(paste(modelValue, " <- ", command, sep = ""))

doItAndPrint(paste("summary(", modelValue, ")", sep=""))

activeModel(modelValue)

tkfocus(CommanderWindow())

}

OKCancelHelp(helpSubject="linearModel", model=TRUE,

reset="resetLinearModel", apply="linearModel")

tkgrid(labelRcmdr(modelFrame,

text=gettextRcmdr("Enter name for model:")), model, sticky="w")

tkgrid(modelFrame, sticky="w")

modelFormula()

subsetWeightFrame <- tkframe(top)

subsetBox(window=subsetWeightFrame, model=TRUE)

weightComboBox <- variableComboBox(subsetWeightFrame,

variableList=Numeric(), initialSelection=dialog.values$initial.weight,

title=gettextRcmdr("Weights"))

tkgrid(getFrame(xBox), sticky="w")

tkgrid(outerOperatorsFrame, sticky="w")

tkgrid(formulaFrame, sticky="w")

tkgrid(subsetFrame, tklabel(subsetWeightFrame, text=" "),

getFrame(weightComboBox), sticky="nw")

tkgrid(subsetWeightFrame, sticky="w")

tkgrid(buttonsFrame, sticky="w")

dialogSuffix(focus=lhsEntry, preventDoubleClick=TRUE)

}

FIGURE 5.2: The linearModel() callback function (part 2, concluded)

5.2 The Cox-Regression Model Dialog in the RcmdrPlugin.survival Package 55

� In the call to dialogSuffix(), focus=lhsEntry places the cursor initially in the left-
hand-side formula text box, and preventDoubleClick=TRUE prevents double-clicking from
pressing the OK button in the dialog box, because double-clicks are used to transfer
variables from the listbox to the model formula.

� The local onOK function references Tcl (text) variables created by the subsetBox() and
modelFormula() macros: subsetVariable contains the subset expression; lhsVariable
contains the expression defining the left-hand side of the model formula (i.e., an expression
that evaluates to the response variable, and is usually just the name of the response
variable); and rhsVariable contains the right-hand side of the model formula.

5.2 The Cox-Regression Model Dialog in the RcmdrPlugin.survival
Package

For a second illustration of a statistical-modeling dialog box, I draw on the Cox-Regression
Model dialog in the RcmdrPlugin.survival package, which is discussed in Section 9.3.1
of the text. Figure 5.3 shows an example of this dialog box in a fresh R Commander session
in which the plug-in package is loaded. I use the Rossi criminal recidivism data set, also
described in the text.

The dialog box includes two tabs: The Data tab is shown at the top of Figure 5.3, and
the Model tab at the bottom. I select week as the time variable and arrest as the event
indicator in the Data tab, leaving all other selections in the tab in their default states. In
the Model tab, I build the right-hand side of the Cox regression model by double-clicking
on the various predictors in the Variables box. For a Cox model, the left-hand side of the
model is formulated from the time and event variables, producing the command

CoxModel.1 <- coxph(Surv(week, arrest) ∼ age + educ + fin + mar + paro +

prio + race + wexp, method="efron", data=Rossi)

when the OK button in the dialog is clicked. The other elements of the Model tab are also
left in their default states.

The CoxModel() callback function, which is invoked by the menu selection Statistics >
Fit models > Cox regression model... once the plug-in package is loaded, is displayed in part
in Figure 5.4. This function is very long—its listing would spread over five pages if shown in
its entirety—reflecting the large number of widgets in the two tabs of the dialog box. Most
of these widgets—variable listboxes, sets of radio buttons, text boxes—are by now entirely
familiar.

I include the callback function here only to show how to imbed a model formula in a
tabbed dialog and how to handle a one-sided formula. Both of these aspects of the callback
function are very simple, and are apparent in the first two arguments of the command

modelFormula(modelTab, hasLhs=FALSE, rhsExtras=TRUE)

The third argument, rhsExtras=TRUE, includes the splines and polynomials button bar in
the dialog; the default for this argument is rhsExtras=FALSE for backwards compatibility
with older versions of the Rcmdr package, on which some plug-ins may rely. The other
lines in Figure 5.2 show how the tabs are handled in the initializeDialog() and di-

alogSuffix() commands, how the buttons at the bottom of the dialog are specified, and
how the one-sided formula and associated button bars are placed in the dialog box via calls
to tkgrid().

56 5 Handling Statistical Models in R Commander Plug-in Packages

FIGURE 5.3: The R Commander Cox-Regression Model dialog box, Data tab (top) and
Model tab (bottom); this example uses the Rossi data set.

5.3 The R Commander Models Menu 57

CoxModel <- function(){

. . .

initializeDialog(title=gettext("Cox-Regression Model",

domain="R-RcmdrPlugin.survival"),

use.tabs=TRUE, tabs=c("dataTab", "modelTab"))

. . .

OKCancelHelp(helpSubject="coxph", model=TRUE, reset="CoxModel", apply="CoxModel")

. . .

modelFormula(modelTab, hasLhs=FALSE, rhsExtras=TRUE)

. . .

tkgrid(labelRcmdr(outerOperatorsFrame, text=" "),

operatorsFrame, sticky="w")

tkgrid(outerOperatorsFrame, sticky="ew")

tkgrid(formulaFrame, sticky="w")

tkgrid(labelRcmdr(dataTab, text=""))

. . .

dialogSuffix(focus=rhsEntry, preventDoubleClick=TRUE, use.tabs=TRUE,

grid.buttons=TRUE,

tabs=c("dataTab", "modelTab"),

tab.names=gettext("Data", "Model", domain="R-RcmdrPlugin.survival"))

}

FIGURE 5.4: The CoxModel() callback function, with most lines omitted; elided lines are
indicated by For the complete CoxModel() function, consult the sources for the Rcm-
drPlugin.survival package.

5.3 The R Commander Models Menu

An advantage of having your plug-in package define new classes of statistical models is that,
once fit, these models can be manipulated via the R Commander Models menu. The fully
expanded Models menu is displayed in Figure 5.5. The corresponding lines in the Rcmdr-

menus.txt file that define the Models menu are shown in Figure 5.6. I’ve suppressed the
final install? field in these lines so that they fit on the page; the install? field isn’t
relevant, in any event, to the current discussion.

Most of the menu items use the calls to the special predicate function modelCapabil-

ity() to determine activation. The only other predicates used is modelsP(), which deter-
mines whether there are R Commander-recognized statistical models in memory, or possibly
whether this is a sufficient number of such models. The modelCapability() function takes
a single argument, which in most instances corresponds to a menu item, and to a row in
the model-capabilities table that the R Commander maintains.

The standard R Commander model-capabilities table is defined by the file Rcmdr-

model-capabilities.txt, which resides the Rcmdr package sources, and is input via
the read.table() command. This file is shown in abbreviated form (with some of the
columns suppressed) in Figure 5.7. The columns in the table represent model “capabilities”
and the rows represent model classes. When the function modelCapability() is called with
a particular capability as its argument (e.g., modelCapability("sum")), it returns TRUE

if the capability is TRUE for the primary class of the active statistical model, or if there is
no row in the table for the class of the current model and the default action is TRUE. The

58 5 Handling Statistical Models in R Commander Plug-in Packages

FIGURE 5.5: The R Commander Models menu, expanded.

5.3 The R Commander Models Menu 59

#
t
y
p
e

m
e
n
u
/
i
t
e
m

o
p
e
r
a
t
i
o
n
/
p
a
r
e
n
t

l
a
b
e
l

c
o
m
m
a
n
d
/
m
e
n
u

a
c
t
i
v
a
t
i
o
n

m
e
n
u

m
o
d
e
l
s
M
e
n
u

t
o
p
M
e
n
u

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
S
e
l
e
c
t

a
c
t
i
v
e

m
o
d
e
l
.
.
.
"

s
e
l
e
c
t
A
c
t
i
v
e
M
o
d
e
l

"
m
o
d
e
l
s
P
(
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
S
u
m
m
a
r
i
z
e

m
o
d
e
l
"

s
u
m
m
a
r
i
z
e
M
o
d
e
l

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
s
u
m
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
m
p
a
r
e

m
o
d
e
l

c
o
e
f
f
i
c
i
e
n
t
s
.
.
.
"

c
o
m
p
a
r
e
C
o
e
f
f
i
c
i
e
n
t
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
c
o
m
p
c
'
)

&
&

m
o
d
e
l
s
P
(
2
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
A
d
d

o
b
s
e
r
v
a
t
i
o
n

s
t
a
t
i
s
t
i
c
s

t
o

d
a
t
a
.
.
.
"

a
d
d
O
b
s
e
r
v
a
t
i
o
n
S
t
a
t
i
s
t
i
c
s

"
a
c
t
i
v
e
M
o
d
e
l
P
(
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
A
k
a
i
k
e

I
n
f
o
r
m
a
t
i
o
n

C
r
i
t
e
r
i
o
n

(
A
I
C
)
"

a
i
c

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
a
i
c
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
B
a
y
e
s
i
a
n

I
n
f
o
r
m
a
t
i
o
n

C
r
i
t
e
r
i
o
n

(
B
I
C
)
"

b
i
c

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
b
i
c
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
S
t
e
p
w
i
s
e

m
o
d
e
l

s
e
l
e
c
t
i
o
n
.
.
.
"

s
t
e
p
w
i
s
e
R
e
g
r
e
s
s
i
o
n

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
s
t
p
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
S
u
b
s
e
t

m
o
d
e
l

s
e
l
e
c
t
i
o
n
.
.
.
"

s
u
b
s
e
t
R
e
g
r
e
s
s
i
o
n

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
s
u
b
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
n
f
i
d
e
n
c
e

i
n
t
e
r
v
a
l
s
.
.
.
"

c
o
n
f
i
d
e
n
c
e
I
n
t
e
r
v
a
l
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
c
o
n
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
B
o
o
t
s
t
r
a
p

c
o
n
f
i
d
e
n
c
e

i
n
t
e
r
v
a
l
s
.
.
.
"

B
o
o
t
s
t
r
a
p

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
b
o
o
t
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
o
m
m
a
n
d

"
D
e
l
t
a

m
e
t
h
o
d

c
o
n
f
i
d
e
n
c
e

i
n
t
e
r
v
a
l
.
.
.
"

D
e
l
t
a
M
e
t
h
o
d
C
o
n
f
I
n
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
d
e
l
'
)
"

m
e
n
u

h
y
p
o
t
h
e
s
i
s
M
e
n
u

m
o
d
e
l
s
M
e
n
u

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
a
s
c
a
d
e

"
H
y
p
o
t
h
e
s
i
s

t
e
s
t
s
"

h
y
p
o
t
h
e
s
i
s
M
e
n
u

"
"

i
t
e
m

h
y
p
o
t
h
e
s
i
s
M
e
n
u

c
o
m
m
a
n
d

"
A
N
O
V
A

t
a
b
l
e
.
.
.
"

a
n
o
v
a
T
a
b
l
e

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
a
o
v
'
)

|
|

m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
A
o
v
'
)
"

i
t
e
m

h
y
p
o
t
h
e
s
i
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
m
p
a
r
e

t
w
o

m
o
d
e
l
s
.
.
.
"

c
o
m
p
a
r
e
M
o
d
e
l
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
c
o
m
p
m
'
)

&
&

m
o
d
e
l
s
P
(
2
)
"

i
t
e
m

h
y
p
o
t
h
e
s
i
s
M
e
n
u

c
o
m
m
a
n
d

"
L
i
n
e
a
r

h
y
p
o
t
h
e
s
i
s
.
.
.
"

t
e
s
t
L
i
n
e
a
r
H
y
p
o
t
h
e
s
i
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
l
i
n
'
)
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

s
e
p
a
r
a
t
o
r

"
"

"
"

"
"

m
e
n
u

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

m
o
d
e
l
s
M
e
n
u

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
a
s
c
a
d
e

"
N
u
m
e
r
i
c
a
l

d
i
a
g
n
o
s
t
i
c
s
"

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

"
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
V
a
r
i
a
n
c
e
-
i
n
f
l
a
t
i
o
n

f
a
c
t
o
r
s
"

V
I
F

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
v
i
f
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
B
r
e
u
s
c
h
-
P
a
g
a
n

t
e
s
t

f
o
r

h
e
t
e
r
o
s
c
e
d
a
s
t
i
c
i
t
y
.
.
.
"

B
r
e
u
s
c
h
P
a
g
a
n
T
e
s
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
b
p
t
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
D
u
r
b
i
n
-
W
a
t
s
o
n

t
e
s
t

f
o
r

a
u
t
o
c
o
r
r
e
l
a
t
i
o
n
.
.
.
"

D
u
r
b
i
n
W
a
t
s
o
n
T
e
s
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
d
w
t
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
R
E
S
E
T

t
e
s
t

f
o
r

n
o
n
l
i
n
e
a
r
i
t
y
.
.
.
"

R
E
S
E
T
t
e
s
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
r
s
e
'
)
"

i
t
e
m

d
i
a
g
n
o
s
t
i
c
s
M
e
n
u

c
o
m
m
a
n
d

"
B
o
n
f
e
r
r
o
n
i

o
u
t
l
i
e
r

t
e
s
t
"

O
u
t
l
i
e
r
T
e
s
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
b
o
n
'
)
"

m
e
n
u

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

m
o
d
e
l
s
M
e
n
u

"
"

"
"

"
"

i
t
e
m

m
o
d
e
l
s
M
e
n
u

c
a
s
c
a
d
e

"
G
r
a
p
h
s
"

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

"
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
B
a
s
i
c

d
i
a
g
n
o
s
t
i
c

p
l
o
t
s
"

p
l
o
t
M
o
d
e
l

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
p
l
t
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
R
e
s
i
d
u
a
l

q
u
a
n
t
i
l
e
-
c
o
m
p
a
r
i
s
o
n

p
l
o
t
.
.
.
"

r
e
s
i
d
u
a
l
Q
Q
P
l
o
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
q
q
p
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
C
o
m
p
o
n
e
n
t
+
r
e
s
i
d
u
a
l

p
l
o
t
s
"

C
R
P
l
o
t
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
c
r
p
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
A
d
d
e
d
-
v
a
r
i
a
b
l
e

p
l
o
t
s
"

A
V
P
l
o
t
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
a
v
p
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
I
n
f
l
u
e
n
c
e

p
l
o
t
"

I
n
f
l
u
e
n
c
e
P
l
o
t

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
i
n
f
p
'
)
"

i
t
e
m

m
o
d
e
l
s
G
r
a
p
h
s
M
e
n
u

c
o
m
m
a
n
d

"
E
f
f
e
c
t

p
l
o
t
s
"

e
f
f
e
c
t
P
l
o
t
s

"
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
'
e
f
f
p
'
)
"

i
t
e
m

t
o
p
M
e
n
u

c
a
s
c
a
d
e

"
M
o
d
e
l
s
"

m
o
d
e
l
s
M
e
n
u

"
"

F
IG

U
R

E
5.

6:
T

h
e

li
n

es
(s

li
gh

tl
y

ed
it

ed
,

an
d

w
it

h
th

e
i
n
s
t
a
l
l
?

fi
el

d
su

p
p

re
ss

ed
)

in
th

e
R
c
m
d
r
-
m
e
n
u
s
.
t
x
t

fi
le

th
a
t

d
efi

n
e

th
e
R
C
om

m
an
d
er

M
od

el
s

m
en

u
,

it
s

su
b

-m
en

u
s,

an
d

m
en

u
it

em
s.

T
h

es
e

li
n

es
a
re

ta
ke

n
fr

o
m

th
e

d
ev

el
o
p

m
en

t
ve

rs
io

n
2
.4

-0
o
f

th
e
R
c
m
d
r

p
a
ck

a
g
e.

T
h

e
u

se
o
f

th
e
m
o
d
e
l
C
a
p
a
b
i
l
i
t
y
(
)

fu
n

ct
io

n
is

ex
p

la
in

ed
in

th
is

se
ct

io
n
.

60 5 Handling Statistical Models in R Commander Plug-in Packages

Capabilities for standard Rcmdr model classes

last modified 2017-02-03 by J. Fox

column menu-item function [package]

#------- --------- ------------------

sum Summarize model summary()

compc Compare model coefficients compareCoefs() [car]

aic AIC aic()

bic BIC bic()

stp Stepwise model selection stepAIC() [MASS]

sub Subset model selection regsubsets() [leaps]

con Confidence intervals confint()

boot Bootstrap confidence intervals Boot() [car]

del Delta method confidence intervals deltaMethod() [car]

aov ANOVA table anova()

Aov ANOVA table Anova() [car]

compm Compare two models anova()

lin Linear hypothesis linearHypothesis() [car]

vif Variance-inflation factors vif() [car]

bpt Breusch-Pagan test bptest() [lmtest]

dwt Durbin-Watson test dwtest() [lmtest]

rse RESET test for nonlinearity resettest() [lmtest]

bon Bonferroni outlier test outlierTest() [car]

plt Basic diagnostic plots plot()

qqp Residual quantile-comparison plot qqPlot() [car]

crp Component+residual plots crPlot() [car]

avp Added-variable plots avPlot() [car]

infp Influence plot influencePlot() [car]

effp Effect plots Effect() [effect]

#

Add observations statistics dialog

fit fitted values fitted()

res residuals residuals()

rst studentized residuals rstudent()

hat hat-values hatvalues()

cook Cook's distances cooks.distance()

sum compc aic bic stp sub con boot del aov Aov . . . cook

lm TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE . . . TRUE

aov TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE . . . TRUE

glm TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE . . . TRUE

multinom TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE . . . TRUE

polr TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE . . . FALSE

default TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE . . . FALSE

FIGURE 5.7: The Rcmdr-model-capabilities.txt file, defining the initial R Commander
model-capabilities table (with some columns suppressed).

5.3 The R Commander Models Menu 61

function returns FALSE if the corresponding entry in the table is FALSE; if there is no row
in the table for the class of the current model and the default action is FALSE; or if there
is no current model. All of the default values are FALSE with the exception of sum, which,
looking at the relevant line in the Rcmdr-menus.txt file (Figure 5.6), is used to control the
activation of the Models > Summarize model menu. When selected, the Summarize model
menu item generates a command calling the summary() generic function with the active
model as its argument. This action will work as desired if there’s an appropriate summary()

method for the active model—either directly for the model’s primary class or an inherited
method. If not, the sum action for the model’s class should be set explicitly to FALSE, as
explained below.

5.3.1 The model-capabilities.txt File

The true value of the R Commander model-capabilities table is your ability to extend
the table by including a model-capabilities.txt file in the inst/etc sub-directory
of your plug-in source package. This file has the same structure at the Rcmdr-model-

capabilities.txt file described above. An illustrative model-capabilities.txt for the
RcmdrPlugin.survival package is shown (again with some columns suppressed) in Fig-
ure 5.8.

The model-capabilities.txt file for the plug-in adds information for three additional
classes of statistical models, "coxph", "survreg", and "coxph.penal", indicating which
of the capabilities (columns) characterize each class of models, and which do not. Thus,
for example, capability compc is TRUE for models of class "coxph", but not for models of
class "survreg" or "coxph.penal". Consequently, the Models > Compare model coefficients
menu item will be activated if the active statistical model is of (primary) class "coxph" but
not if it is of class "survreg" or "coxph.penal". The table for the plug-in was coded this
way because the compareCoefs generic function in the car package, which is called by the
dialog launched by the menu item Compare model coefficients, has an appropriate method
for "coxph" model objects but not for the other two classes of survival regression models. An
alternative would have been to supply, and properly export, compareCoefs.survreg() and
compareCoefs.coxph.penal() methods directly in the RcmdrPlugin.survival package,
allowing the two corresponding entries in the model-capabilities table to be set to TRUE.

The comments (lines preceded by #) at the top of the file explain how to interpret each
column in the R Commander model-capabilities table. As you can see, and as mentioned,
most columns pertain to individual menu items in the R Commander Models menu. As well,
each item corresponds to a generic function. If the generic will work properly with models
of a class that you introduce—possibly after you provide the necessary method—then you
would normally set the corresponding entry in the table to TRUE to enable the corresponding
menu item.

The aov and Aov columns are a bit more complicated, in that they affect both whether
the ANOVA table menu item is activated and the content of the resulting dialog: If one or
the other (or both) of these capabilities is TRUE, then the dialog is activated; if aov is TRUE,
the dialog includes a radio button for “type-II” (sequential) tests; if Aov is TRUE, the dialog
includes buttons for “type-II” and “type-III” tests.

The last five standard columns (fit through cook) pertain to the contents (i.e., not the
activation) of the Add Observation Statistics dialog: If a capability is TRUE, then there’s a
check box for the corresponding item.

In addition to referencing existing menu items in the Models menu, your plug-in can
define new menu items and sub-menus specific to a model class introduced by the plug-
in. An example is provided by the RcmdrPlugin.survival package: See Figures 3.5 and
3.6 (on pages 20–21). The model-capabilities.txt file for the RcmdrPlugin.survival

62 5 Handling Statistical Models in R Commander Plug-in Packages

Capabilities for RcmdrPlugin.survival model classes

last modified 2017-02-03 by J. Fox

column menu-item function [package]

#------- --------- ------------------

sum Summarize model summary()

compc Compare model coefficients compareCoefs() [car]

aic AIC aic()

bic BIC bic()

stp Stepwise model selection stepAIC() [MASS]

sub Subset model selection regsubsets() [leaps]

con Confidence intervals confint()

boot Bootstrap confidence intervals Boot() [car]

del Delta method confidence intervals deltaMethod() [car]

aov ANOVA table anova()

Aov ANOVA table Anova() [car]

compm Compare two models anova()

lin Linear hypothesis linearHypothesis() [car]

vif Variance-inflation factors vif() [car]

bpt Breusch-Pagan test bptest() [lmtest]

dwt Durbin-Watson test dwtest() [lmtest]

rse RESET test for nonlinearity resettest() [lmtest]

bon Bonferroni outlier test outlierTest() [car]

plt Basic diagnostic plots plot()

qqp Residual quantile-comparison plot qqPlot() [car]

crp Component+residual plots crPlot() [car]

avp Added-variable plots avPlot() [car]

infp Influence plot influencePlot() [car]

effp Effect plots Effect() [effect]

#

Add observations statistics dialog

fit fitted values fitted()

res residuals residuals()

rst studentized residuals rstudent()

hat hat-values hatvalues()

cook Cook's distances cooks.distance()

Added by this package: tph (Test proportional hazards)

sum compc aic bic stp sub con boot del aov Aov . . . cook tph

coxph TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE . . . FALSE TRUE

survreg TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE . . . FALSE FALSE

coxph.penal TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE . . . FALSE TRUE

FIGURE 5.8: The model-capabilities.txt file for the RcmdrPlugin.survival package
(with some columns suppressed).

5.4 The RcmdrModels: Field in the Plug-in Package DESCRIPTION File 63

package also adds a new column, labelled tph (for “test proportional hazards”) to the
model-capabilities table, corresponding to a menu item that the plug-in adds to the Models
menu. This capability is set to TRUE for "coxph" and "coxph.penal" models and FALSE for
"survreg" models; it is also implicitly set to FALSE for all other classes of models recognized
by the R Commander that don’t explicitly declare the capability (e.g., models of class "lm"
and "glm").

Finally, if the R Commander encounters a class of statistical models in the model-

capabilities.txt file that it doesn’t already recognize, it automatically registers it as
an R Commander model class.

5.4 The RcmdrModels: Field in the Plug-in Package DESCRIPTION File

The RcmdrModels: field in the plug-in package’s DESCRIPTION file may be used to list classes
of new statistical models to be recognized by the R Commander. If these model classes already
appear in the plug-in packages’s model-capabilities.txt file, it is unnecessary to repeat
them in the DESCRIPTION file, but it does not harm to do so. The RcmdrModels: field is
retained primarily for backwards compatibility, for plug-ins that introduce new classes of
models but don’t use the model-capabilities.txt file.

By way of illustration, the DESCRIPTION file for the RcmdrPlugin.survival package
is shown in Figure 5.9.1 Thus, when the plug-in package is loaded, the R Commander sub-
sequently recognizes objects of classes "coxph" (Cox regression models), "survreg" (para-
metric survival regression models), and "cox.penal" (Cox models with “frailty” terms)
as statistical model objects. The remainder of the package DESCRIPTION file is standard.
Because the RcmdrPlugin.survival package has a model-capabilities.txt file that
already covers these three classes of models, the RcmdrModels: field is entirely redundant
and could have been omitted. I retained it simply to provide an example.

1This DESCRIPTION file was also discussed in Section 2.4.

64 5 Handling Statistical Models in R Commander Plug-in Packages

Package: RcmdrPlugin.survival

Type: Package

Title: R Commander Plug-in for the 'survival' Package

Version: 1.2-0

Date: 2017-02-03

Author: John Fox

Maintainer: John Fox <jfox@mcmaster.ca>

Depends: survival, date, stats

Imports: Rcmdr (>= 2.4-0)

Description: An R Commander plug-in for the survival

package, with dialogs for Cox models, parametric survival regression models,

estimation of survival curves, and testing for differences in survival

curves, along with data-management facilities and a variety of tests,

diagnostics and graphs.

License: GPL (>= 2)

LazyLoad: yes

LazyData: yes

RcmdrModels: coxph, survreg, coxph.penal

}

FIGURE 5.9: DESCRIPTION file for the RcmdrPlugin.survival package (shown previously
in Figure 2.5), illustrating the RcmdrModels: field.

6

Debugging R Commander Plug-in Packages

Debugging programs can be a difficult process in the best of circumstances. For several rea-
sons, debugging R Commander dialog-box callback functions isn’t the best of circumstances:

� It is often necessary to use (i.e., to interact with) the dialog to discover the source of an
error.

� The macro-like utility functions employed to construct R Commander dialogs complicate
the debugging process.

� The R Commander intercepts error and warning messages to print them in the Messages
pane, at times rendering the messages invisible when there is a dialog-disabling bug.

� You normally need to restart R, reinstall your package, and reload the Rcmdr package
and your plug-in, and then input a data set, to test a dialog (but see below).

I use the RStudio IDE to develop and debug R programs and packages (including the
Rcmdr package), and, partly for this reason, I’ve taken pains to insure the the R Comman-
der can be used inside RStudio. In its default configuration, when the Rcmdr package is
loaded in RStudio, it directs output and messages to the R console, and the main R Com-
mander window therefore appears without Output and Messages panes. In addition, R help
pages invoked from the R Commander appear in the RStudio Help tab. Because of potential
incompatibilities with the RStudio graphics device, however, graphs are displayed in the R
Windows graphics device under Windows, the Quartz graphics device under Mac OS X, and
the X11 graphics device under Linux/Unix.

6.1 Debugging Callback Functions

You can debug a dialog-box callback function in your installed plug-in using the usual R and
RStudio debugging tools. For example, to debug the Survfit() callback function having
loaded the RcmdrPlugin.survival package, you can issue the commands

debugonce(RcmdrPlugin.survival::Survfit)

Survfit()

at the command prompt in the R console. These commands work because the RcmdrPlu-
gin.survival package exports its callback functions (as explained in Section 2.4).1 I suggest
that you try the commands to see what happens:

1Because the Rcmdr package doesn’t export its callback functions, you would need, e.g., debu-

gonce(Rcmdr:::numericalSummaries) and the command Rcmdr:::numericalSummaries() to debug a stan-
dard R Commander callback function. The only reason to do so, however, would likely be to see how the
function works.

65

66 6 Debugging R Commander Plug-in Packages

� Notice how macro calls to functions like OKCancelHelp() and radioButtons() are ex-
panded, stepping through each line of the macro. You can use the RStudio debugging
tools here to skip to the end of a macro, for example by selecting Debug > Finish function
or loop from the RStudio menus, by pressing the equivalent key combination (Shift-F6),
or by pressing the corresponding tool button near the top of the Console.

� Debugging a callback function can be useful to detect problems in constructing the cor-
responding dialog box but won’t help you locate an error in building an R command in
your dialog. Once the callback function exits, debug mode terminates, typically leaving
an open modal Tk dialog box. If there’s a problem in the local onOK() function for the
dialog, then you won’t discover that until you press the OK button in the dialog.

� If you want to debug the onOK() function for the dialog, you can enter the command
debug(onOK) while you’re stepping through your callback function in debugging mode,
after this local function is defined in the callback function. Then, when you subsequently
press OK in the displayed dialog, you’ll enter onOK() in debugging mode, allowing you
to use the usual debugging tools to step through the function, to examine local variables
like the command that’s constructed in onOK(), etc.

Alternatively, and often more conveniently, you could insert a call or calls to browser() in
a callback function or inside the local onOK() to stop execution at the corresponding lines,
entering debugging mode at these points.

To illustrate, Figure 6.1 shows a “screenshot” of RStudio in the process of debugging the
local onOK() function defined by the Survfit() callback function. To arrive at this point,
having loaded the RcmdrPlugin.survival plugin and read the Rossi data set from the
package:

� I entered the command debugonce(RcmdrPlugin.survival::Survfit);

� called the Survfit() function at the R command prompt;

� stepped through SurvFit() until onOK() was defined;

� entered the command debug(onOK) in debugging mode at the browser command prompt;

� continued through Survfit() until the callback function exited, bringing up the Survival
Function dialog box (shown in Figure 6.2);

� clicked the OK button in the dialog to execute onOK(), entering debugging mode in
onOK().

To debug callback functions for your plug-in in this manner implies reinstalling and
restarting the plug-in each time your make a change to a callback function. That’s time-
consuming, and so I’ve built some features into the R Commander to facilitate more conve-
nient debugging. To use these features, you’ll have to unpack the source-code tree for the
Rcmdr package in a convenient location on your computer. Then proceed as follows:

� Load the Rcmdr package and your plug-in package in the normal manner, and then
immediately close the R Commander window without exiting from R.

� Source the file debug-Rcmdr.R, which is shown in Figure 6.3. To use this file you first
must edit it to reflect the location of the Rcmdr package sources on your system. You
can download a copy of the file at
http://socserv.mcmaster.ca/jfox/Books/RCommander/debug-Rcmdr.R.

6.1 Debugging Callback Functions 67

FIGURE 6.1: RStudio session debugging the local onOK() function defined by the Survfit()
callback function.

68 6 Debugging R Commander Plug-in Packages

FIGURE 6.2: Survival Function dialog constructed by the Survfit() callback function in
the RcmdrPlugin.survival package. Clicking the OK button in the dialog produces the
debugging session shown in Figure 6.1.

6.1 Debugging Callback Functions 69

� Then source the .R file for the callback function that you’re working on—say the function
Survfit(), defined in the file Survfit.R in the RcmdrPlugin.survival sources.

� Finally, invoke the callback function directly at the R command prompt, for example, by
the command Survfit(). You can debug the callback function in the usual manner, by
setting breakpoints, calling debugonce(Survfit), etc. Normally, you’d read a data set
and perform whatever operations are required before invoking the callback function. If the
data set is already in memory from a previous debugging iteration, then you can simply
make it the active data set via the Data set: button in the R Commander toolbar.

Unless you end up crashing R or the R Commander, you should be able edit your callback
function, source it, and debug it multiple times without restarting R or reloading the Rcmdr
package or your plug-in. If you wish, you should also be able to close the main R Commander
window and then re-open it in pristine state via the command Commander() (with no
arguments).

70 6 Debugging R Commander Plug-in Packages

For Rcmdr Plug-in Dialog Debugging

1. load the Rcmdr package and your plug-in via library(Rcmdr)

or possibly library(RcmdrPlugin.<your plugin>)

2. close the Commander window (but don't exit from R)

3. source this file

4. source the file for the dialog you're working on

5. open the dialog by entering your_dialog_function() in the R Console

Adjust the following line to reflect the location of the Rcmdr sources

on your system:

path <- "<location of the Rcmdr sources on your computer>/R"

files <- list.files(path, pattern=".*\\.R")

files <- paste(path, files, sep="/")

for (file in files) source(file)

library(tcltk)

library(tcltk2)

options(Rcmdr=list(RcmdrEnv.on.path=TRUE, suppress.X11.warnings=TRUE,

use.markdown=TRUE))

manageRcmdrEnv <- function(){

RcmdrEnv.on.path <- getOption("Rcmdr")[["RcmdrEnv.on.path"]]

if (is.null(RcmdrEnv.on.path)) RcmdrEnv.on.path <- FALSE

if (RcmdrEnv.on.path){

RcmdrEnv <- function() {

pos <- match("RcmdrEnv", search())

if (is.na(pos)) { # Must create it

RcmdrAttach <- base::attach

RcmdrEnv <- list()

RcmdrAttach(RcmdrEnv, pos = length(search()) - 1)

rm(RcmdrEnv)

pos <- match("RcmdrEnv", search())

}

return(pos.to.env(pos))

}

}

}

Commander()

FIGURE 6.3: The file debug-Rcmdr.R (to be customized for the location of the Rcmdr
package sources on your system).

Appendix A

A Guide to the R Commander Utility Functions

This appendix covers the utility functions exported by the Rcmdr package that are most
useful in writing plug-in packages. I’ve omitted functions that, although exported by the
Rcmdr package, are unlikely to be used in a plug-in, such as functions for managing the R
Markdown document created during an R Commander session. All of the exported utilities
are briefly described in the help file ?Rcmdr.Utilities.

The functions described in the appendix are divided into sections based on their purpose.
The arguments for each function are presented and explained. Macro-like functions are
marked as such. Macro-like functions are occasionally required to deal with scoping issues
that arise in interfacing R with Tcl/Tk via the tcltk package.

A.1 Building Dialogs

initializeDialog() (macro)

Creates a top-level Tk window for an R Commander dialog box and performs a variety of
housekeeping operations. You should typically call initializeDialog() near the beginning
of a callback function that creates a dialog box.

initializeDialog(window=top, title="", offset=10, preventCrisp,

use.tabs=FALSE, notebook=notebook, tabs=c("dataTab", "optionsTab"),

suppress.window.resize.buttons=TRUE)

Arguments:

window The name of the top-level window to be created. I typically use the default top

for a main dialog and subdialog for a sub-dialog created inside the onOK() function of a
main dialog.

title The text to appear in the title-bar of the window.

offset Offset of the top-left corner of the window in pixels from the top-left corner of the
main R Commander window.

preventCrisp Ignored (but retained for backwards compatibility).

use.tabs Create a tabbed dialog?

notebook Name for the Tk notebook widget created to contain tabs (if use.tabs=TRUE).

tabs Names for the tabs—use as many names as there are tabs to be created.

suppress.window.resize.buttons Should be TRUE for a dialog that isn’t resizable.

71

72 A Guide to the R Commander Utility Functions

dialogSuffix() (macro)

Performs house-keeping tasks to finalize a dialog box. You would typically call dialogSuf-
fix() at the end of your callback function.

dialogSuffix(window=top, onOK=onOK, onCancel=onCancel, rows, columns,

focus=top, bindReturn=TRUE, preventGrabFocus=FALSE,

preventDoubleClick=FALSE, preventCrisp, use.tabs=FALSE,

notebook=notebook, tabs=c("dataTab", "optionsTab"),

tab.names=c("Data", "Options"), grid.buttons=FALSE,

resizable=FALSE, force.wait=FALSE)

Arguments:

window The name of the top-level window to be finalized.

onOK The name of the local function defined within the callback function to be called when
the OK button in the dialog box is pressed. I typically use the default onOK for a main
dialog and onOKsub for a sub-dialog.

onCancel The name of the local function to be called when the Cancel button is pressed.
The OKCancelHelp() macro provides a standard onCancel() function, so this argument
can almost always be left at its default.

rows, columns, preventCrisp Ignored (but retained for backwards compatibility).

focus Tk window to get the focus. By default top, which is the usual name for the top-level
window for the dialog, but may be, e.g., a text widget within the dialog.

bindReturn Bind the Return or Enter key to the onOK function.

preventGradFocus Prevent the dialog box from grabbing the focus.

preventDoubleClick Prevent double-clicking from pressing the OK button, even when
the double.click option is set; necessary for statistical modelling dialogs, which use
double-clicking to build the model formula.

use.tabs Finalize a tabbed dialog?

notebook Name of the Tk notebook widget containing tabs in a tabbed dialog.

tab.names Text labels for the tabs in a tabbed dialog.

grid.buttons Insert a call to tkgrid() for the frame containing the OK , Cancel , etc.,
buttons; use TRUE for tabbed dialogs and optionally for other dialogs.

resizable Is the dialog resizable?

force.wait Call tkwait.window() so that processing is suspended until the dialog is
closed; overrides the R Commander tkwait.dialog option if the latter is set to FALSE

(its default). The force.wait argument should normally be set to TRUE for sub-dialogs
when the main dialog is still open.

Appendix A 73

OKCancelHelp(), subOKCancelHelp() (macros)

Creates OK and Cancel buttons, and, optionally, Help, Reset , and Apply buttons; sub-
OKCancelHelp() is for sub-dialogs and creates only OK, Cancel, and (optionally) Help
buttons.

OKCancelHelp(window=top, helpSubject=NULL, model=FALSE,

reset=NULL, apply=NULL, helpPackage=NULL)

subOKCancelHelp(window=subdialog, helpSubject=NULL)

Arguments:

window The name of the top-level window to which the buttons will be added.

helpSubject Quoted character string to be used in a call to help() when the Help button
is pressed; if NULL there will be no Help button.

model Set to TRUE for a statistical modeling dialog.

reset Name of the function to be called, typically the callback function itself, when the
Reset button is pressed; if NULL there will be no Reset button.

apply Name of the function to be called, typically the callback function itself, when the
Apply button is pressed; if NULL there will be no Apply button.

helpPackage Quoted name of the package in which the specified help subject resides; not
usually necessary but may be needed to resolve ambiguity when the same help subject
appears in more than one attached package.

Unless you specify grid.buttons=TRUE in the call to dialogSuffix(), it’s necessary to
include a command like tkgrid(buttonsFrame, sticky="w") above the call to dialog-

Suffix() to place the OK , Cancel , etc., buttons at the bottom of the dialog box.

74 A Guide to the R Commander Utility Functions

checkBoxes() (macro)

Builds a set of check boxes.

checkBoxes(window=top, frame=stop("frame not supplied"),

boxes=stop("boxes not supplied"),

initialValues=NULL, labels=stop("labels not supplied"),

title=NULL, ttk=FALSE)

Arguments:

window Name of a previously created parent window to contain the check boxes.

frame Quoted name of a Tk frame widget to be created to contain the check boxes.

boxes Character vector of names for the check boxes, one for each box to be created. A Tcl
variable is created in the environment of the calling function for each check box, recording
the current state of the check box. If, e.g., boxes=c("a", "b"), these variables are named
aVariable and bVariable. You should make sure that these names are unique within the
dialog-box function.

initialValues A vector of 0s and 1s indicating whether each box is (respectively) initially
unchecked or checked; the values can be quoted numerals (character values) or numeric.

labels A vector of character strings to label the check boxes.

title An optional title (character string) to label the set of check boxes

ttk If TRUE (the default is FALSE), a border (box) is drawn around the set of check boxes.

Appendix A 75

radioButtons() (macro)

Constructs a related set of radio buttons.

radioButtons(window=top, name=stop("name not supplied"),

buttons=stop("buttons not supplied"),

values=NULL, initialValue=..values[1],

labels=stop("labels not supplied"),

title="", title.color=getRcmdr("title.color"),

right.buttons=FALSE, command=function(){})

Arguments:

window Name of a previously created parent window to contain the radio buttons.

name Quoted name to be used to construct the Tcl variable recording the state of the
radio buttons and for the Tk frame widget containing the buttons. For example, if
name="buttons" then the variable is buttonsVariable and the frame buttonsFrame.
These names should be unique within the dialog-box function.

buttons Character vector of names for the buttons, to be used for creating Tk buttons;
for example, if buttons=c("one", "two") then the buttons are named oneButton and
twoButton. These names also should be unique within the dialog-box function.

values A vector of values, one per button, to be returned when the corresponding button
is pressed; if NULL (the default) this is set to the buttons argument.

initialValue The value of the initially pressed button; by default, this is the first button.

labels A vector of text labels to be printed next to the buttons.

title An optional title for the set of radio buttons.

title.color The color for the title, defaulting to the standard R Commander title color.

right.buttons If TRUE (the default is FALSE) the button labels are printed to the right of
the buttons.

command A function to be executed each time a button is pressed (and before the user
presses OK), allowing you to modify the dialog depending upon the currently pressed
button. Rarely used.

76 A Guide to the R Commander Utility Functions

variableListBox(), variableComboBox() (macros)

These functions construct list widgets, returned as objects respectively of class "listbox"

and "combobox", from which the user can select one or (optionally) more items. The lists
are usually, but not necessarily in the case of variableListBox()1, the variables in the
current data set or a subset of these variables (such as the factors in the current data set.
variableListBox() creates a scrollable list, variableComboBox() a drop-down list.

variableListBox(parentWindow, variableList=Variables(), bg="white",

selectmode="single", export="FALSE", initialSelection=NULL,

listHeight=getRcmdr("variable.list.height"), title)

variableComboBox(parentWindow, variableList=Variables(),

export="FALSE", state="readonly",

initialSelection=gettextRcmdr("<no variable selected>"),

title="")

Arguments:

parentWindow The Tk widget containing the listbox—the top-level window for the dialog,
a tab, or a Tk frame.

variableList A character vector of items composing the list to be displayed, most often
a list of variables from the current data set. The default, returned by Variables() is all
of the variables in the current data set; other common values are Factors() (all factors
in the current data set) and Numeric (all numeric variables). See Section A.3 for more on
Variables(), Factors(), and Numeric().

bg The color of the background of the variable list.

selectmode If "single" (the default), the user can select only one item in the list; specify
selectmode="multiple" to allow the user to select more than one item. Note that you
cannot otherwise restrict the number of items selected, so, e.g., if you require the user to
select exactly two items, you’ll have to check the number selected.

export Sets the exportSelection for the Tk listbox widget. You can almost always leave
this at the default value, FALSE.

initialSelection For variableListBox(), the index or indexes of the item or items in
the list that are initially selected, using 0-based indexing. You can use varPosn() (see
immediately below) to translate variable names into indexes. If NULL (the default), then
no items are initially selected.

listHeight The number of items to display at one time. The default is taken from the R
Commander variable.list.height option.

title Character string giving the title for the listbox; optional for variableComboBox().

state "readonly" if the user can’t modify the entries in a combo box. Other possibilities
are "normal" and "disabled", but these are rarely useful.

1Because variableComboBox() attaches "<no variable selected>" to the top of the displayed list, it’s
only really suitable for lists of variables.

Appendix A 77

varPosn()

Returns the 0-based position of one or more names, typically variable names, in a vector of
names.

varPosn(variables,

type=c("all", "factor", "numeric", "nonfactor", "twoLevelFactor"),

vars=NULL)

Arguments:

variables A character vector of names.

type The type of variables in the active data set within which the names in variables will
be matched.

vars An optional arbitrary vector of names within which the names in variables will be
matched; if given, type is ignored.

getFrame(), getSelection()

These generic functions are for working with "listbox" and "combobox" objects created by
variableListBox() and variableComboBox(). getFrame() returns the Tk frame widget
containing the listbox or combo box, and can be used, e.g., with grid() to place the box
in the dialog. getSelection() returns a vector of names of the currently selected items in
a listbox (possibly one or none—in the latter event the result is length 0), or the name of
the selected item in a combo box.

getFrame(object)

getSelection(object)

Argument:

object An object of class "listbox" or "combobox".

78 A Guide to the R Commander Utility Functions

groupsBox() (macro)

Creates a “by-group” button and associated sub-dialog, for use, e.g., in plotting by groups.

groupsBox(recall=NULL, label=gettextRcmdr("Plot by:"),

initialLabel=gettextRcmdr("Plot by groups"),

errorText=gettextRcmdr("There are no factors in the active data set."),

variables=Factors(),

plotLinesByGroup=FALSE, positionLegend=FALSE,

plotLinesByGroupsText=gettextRcmdr("Plot lines by group"),

initialGroup=NULL, initialLinesByGroup=1, window=top)

Arguments:

recall The function to be called in the event that there are no applicable groups variables
in the active data set; normally the dialog-box function that calls groupsBox().

label The text for the “by-group” button when a groups variable is selected (to be followed
by the name of the selected variable).

initialLabel The text for the “by-group” button when no groups variable is selected.

errorText The error message to be printed if the button is pressed when no suitable groups
variables are in the active data set.

variables Candidates for groups variables, defaults to all factors in the active data set.

plotLinesByGroup Include a check-box in the groups sub-dialog? FALSE by default.

positionLegend Includes the message “Position legend with mouse click” in the sub-dialog;
no longer used in any standard R Commander dialog; retained for backwards compatibility.

plotLinesByGroupsText The text to appear to the left of the (optional) check-box in the
sub-dialog.

initialGroup Quoted name of the variable initially selected in the sub-dialog. If NULL no
variable is initially selected.

initialLinesByGroup If 1 (the default), the (optional) check-box in the sub-dialog is ini-
tially checked; if 0 it is unchecked.

window The unquoted name of the Tk windows containing the “by-group” button.

The groupsBox() macro creates several variables in the environment of the calling
dialog-box function: groupsFrame is the Tk frame widget containing the “by-group” button
and can be placed in the dialog with, e.g., tkgrid(groupsFrame, sticky="w"); .groups
contains the quoted name of the selected groups variable or is FALSE if no groups variable
is selected; .linesByGroup is TRUE or FALSE depending upon the status of the (optional)
check-box.

Appendix A 79

subsetBox() (macro)

Creates a text box for a subsetting expression.

subsetBox(window = top, subset.expression = NULL, model = FALSE)

Arguments:

window The Tk window to contain the subset box.

subset.expression If non-NULL, a character string that evaluates to an R subsetting
expression—e.g., returning TRUE or FALSE for each case. If NULL and model=TRUE, the
subset expression saved by a previous statistical model if one was saved. Otherwise if
NULL, the string "<all valid cases>" is used.

model TRUE for a statistical-modeling dialog (such as the standard R Commander Linear
Model dialog) that handles the subset expression.

The subsetBox() macro creates the variables subsetFrame (with the Tk frame widget
containing the subset box) and subsetVariable (the Tcl variable containing the contents
of the box) in the environment of the calling dialog-box function.

modelFormula() (macro)

Constructs an R model-formula widget, usually, but not necessarily, for a statistical-
modeling dialog.

modelFormula(frame=top, hasLhs=TRUE, rhsExtras=NULL,

formulaLabel=gettextRcmdr("Model Formula"))

Arguments:

frame The Tk window within which the formula widget resides.

hasLhs If FALSE (the default is TRUE), the formula has only a right-hand side.

rhsExtras If TRUE, the toolbar containing buttons for generating polynomials and regres-
sion splines is included in the formula widget. The default is TRUE for models that have a
left-hand side and FALSE for those that don’t.

formulaLabel The text label to appear to the left of the formula box.

The modelFormula() macro creates several variables in the environment of the calling
dialog-box function, including formulaFrame (the Tk frame containing the formula widget);
and lhsVariable and rhsVariable (Tcl variables with the left-hand and right-hand sides
of the formula).

80 A Guide to the R Commander Utility Functions

formulaFields()

Extracts information from a statistical-model object.

formulaFields(model, hasLhs=TRUE, glm=FALSE)

Arguments:

model The model object

hasLhs Whether the formula in the model object has a left-hand side.

glm Whether the model is a "glm" object.

Returns a list with the following elements:

lhs A character string with the left-hand side of the model, or NULL if hasLhs=FALSE.

rhs A character string with the right-hand side of the model.

data A character string with the name of the data set to which the model was fit.

family For a GLM, a character string with the name of the family for the model; otherwise
NULL.

link For a GLM, a character string with the name of the link for the model; otherwise
NULL.

UpdateModelNumber()

The R Commander numbers models serially during a session; the numbers can be used
to create unique model names, and the current number can be retrieved via getR-

cmdr("modelNumber").

UpdateModelNumber(increment=1)

Argument:

increment Self-explanatory, defaults to 1. If negative, the model number is decremented.

You normally call UpdateModelNumber() near the beginning of a statistical modeling
dialog, before constructing a (default) model name. In the event of an error, you can call
UpdateModelNumber(-1) to avoid skipping numbers.

Appendix A 81

putDialog(), getDialog()

These functions are for managing state information for dialogs.

putDialog(dialog, values=NULL, resettable=TRUE)

getDialog(dialog, defaults=NULL)

Arguments:

dialog Character string giving the name under which state information is stored; typically
the name of the dialog-box function.

values A list containing the state information, with elements of the form name = value .

resettable Whether the dialog has a Reset button, default TRUE.

defaults A list of default values containing items with the same names as values, to be
used if no state information is stored for dialog.

putRcmdr(), getRcmdr()

These functions are for storing and retrieving arbitrary information in the .Rcm-

drEnv environment maintained by the Rcmdr package. Be careful not to use an ex-
isting name, so as not to clobber standard R Commander state information. To check
the initial contents of .RcmdrEnv, load the Rcmdr package and enter the command
ls(envir=Rcmdr:::.RcmdrEnv, all.names=TRUE) at the R command prompt. For addi-
tional discussion of this point, see Section 4.2.

putRcmdr(x, value)

getRcmdr(x, mode="any", fail=TRUE)

Arguments:

x A character string giving the name under which the information is stored.

value Any R object to be stored.

mode The R mode of the object to be retrieved; it’s generally safe to let this default to
"any".

fail If TRUE, the default, and the named object doesn’t exist in .RcmdrEnv, then an error
results; if, under these circumstances fail=FALSE, then NULL is returned, without an error.

titleLabel()

Creates a ttk label widget with the R Commander title font and color.

titleLabel(...)

Argument:

... Arguments to be passed to ttklabel().

82 A Guide to the R Commander Utility Functions

A.2 Utilities Useful for onOK() Button-Callback Functions

closeDialog() (macro)

As its name suggests, closes the dialog box (and performs some housekeeping). closeDia-
log() should normally be called somewhere in onOK().

closeDialog(window=top, release=TRUE)

Arguments:

window Tk window to close.

release If TRUE, call tkgrab.release(); it’s best to leave this alone.

doItAndPrint(), justDoIt(), logger()

These functions are for processing R commands composed as character strings. By far the
most commonly used of these commands is doItAndPrint().

doItAndPrint(command, log=TRUE, rmd=log)

justDoIt(command)

logger(command, rmd=TRUE)

Arguments:

command A character string representing a single complete command; the command can
be spread over several lines separated by new-line characters, "\n". Note that a long
character string will be automatically split to fit in the R Script tab, and so you generally
don’t have to include new-lines unless these improve the clarity of the command.

log Echo the command to the R Script tab as well as executing it and printing its output.
This should almost always be TRUE (the default).

rmd Include the command in the R Markdown and knitr LATEX documents built by the
R Commander; the default is the value of log—i.e., almost always TRUE. Should be
set to FALSE if the command requires direct user intervention (e.g., interactive point-
identification in a graph).

doItAndPrint() causes the command to be executed, entered into the R Commander
R Script tab, optionally entered into the R Markdown tab, and entered, along with any
printed output generated into the Output pane. justDoIt() causes the command to be
executed without any of the other effects. logger() “logs” the command into the R Script
tab, R Markdown tab, and Output pane without executing the command.

Appendix A 83

RcmdrTkmessageBox()

Creates a customized Tk message box and returns the user’s response (the name of the
button pressed).

RcmdrTkmessageBox(message, icon=c("info", "question", "warning",

"error"), type=c("okcancel", "yesno", "ok"), default, title="")

Arguments:

message Character string with the text message to display.

icon One of four standard icons defined by the R Commander.

type Determines the buttons displayed.

default The button that’s pressed by default, which depends on the type. If unspecified,
the default button is "ok" for "okcancel"; "yes" for "yesno"; "ok" for "ok".

title Character string giving the title for the message box.

errorCondition() (macro)

Closes the dialog box, prints an error message in the R Commander Messages pane, and,
typically, reopens the dialog in its previous state.

errorCondition(window=top, recall=NULL, message, model=FALSE)

Arguments:

window Tk window for the dialog, to be closed.

recall Text string giving the name of the callback function for the dialog, to be reopened.

message Text string giving error message.

model If TRUE the model number will be decremented by 1, preventing model numbers from
being skipped when a model-producing dialog is closed as a consequence of an error.

Message()

Print a message in the R Commander Messages pane.

Message(message, type=c("note", "error", "warning"))

message Text string giving the message to be printed.

type The type of message, flagged as such in the Messages pane.

84 A Guide to the R Commander Utility Functions

checkReplace()

Used to check whether an object of a given name already exists, to avoid clobbering an
existing object when a user provides an object name in a dialog. checkReplace() uses
RcmdrTkmessageBox() to create a yes/no message box that returns either "no" (the default)
or "yes". You can then use the answser to decide whether to replace the existing object.

checkReplace(name, type=gettextRcmdr("Variable"))

Arguments:

name The quoted object name to check.

type A character string used to customize the message in the box, which is of the form,
“type name already exists. Overwrite type” (with the second appearance of type converted
to lower-case).

activateMenus()

Causes the activation status of menus and menu-items to be updated. It’s rarely necessary
to call this functions directly—for example, it’s called whenever the active data set changes.

activateMenus()

setBusyCursor(), setIdleCursor()

If a computation is expected to be time-consuming, calling setBusyCursor() draws this
fact to the user’s attention. The result is system-dependent, but is typically something like
an “hour-glass” cursor. Calling setIdleCursor() after the computation restores the cursor
to its usual state.

setBusyCursor()

setIdleCursor()

trim.blanks()

Removes one or more initial and trailing blanks (" ") from a character string.

trim.blanks(text)

Argument:

text Character string to be trimmed.

popCommand(), popOutput()

The R Commander maintains stacks (last-in, first-out queues) of commands and text output.
These commands return the last item in each stack, by default removing it from the stack.

popCommand(keep=FALSE)

popOutput(keep=FALSE)

Argument:

keep If TRUE, leave the last item on the stack rather than removing it.

Appendix A 85

A.3 Working With the Active Data Set and Active Statistical
Model

activeDataSet(), ActiveDataSet()

These functions reset the active data set or retrieve its name. They are partly redundant;
both are retained for backwards compatibility. After doing some housekeeping, active-
DataSet() calls ActiveDataSet().

activeDataSet(dsname, flushModel=TRUE, flushDialogMemory=TRUE)

ActiveDataSet(name)

Arguments:

dsname A character string giving the name of a data frame (or an object coercible to a data
frame) that is to become the active data set. If missing, the name of the active data set
is returned, or, if there’s no active data set, an error message is printed.

flushModel, flushDialogMemory If a new active data set is specified, normally a record
of the active statistical model and any information about dialog states are removed, be-
cause such information typically pertains to the previously active data set. Sometimes,
however—for example, when a variable is added to the active data set—it would be better
to retain this information, in which case you can set one or both of these arguments to
FALSE.

name A character string giving the name of a data frame to become the active data set; if
missing, the name of the active data set is returned, or, if there’s no active data set, NULL
is returned.

Variables(), Numeric(), Factors(), TwoLevelFactors()

These functions return the saved names or save the names of various classes of variables
in the active data set. It’s rarely necessary to save variable names explicitly because this
is typically done automatically when a data set becomes the active data set or when the
active data set is modified. Character and logical variables in the active data set are treated
by the R Commander as factors and are included in the names returned by Factors().

Arguments:

names A character vector of variable names to be stored. If missing, the names of the
variables (or variables of a particular class) in the active data set set are returned—which
is typically how these functions are used.

86 A Guide to the R Commander Utility Functions

listVariables(), listNumeric(), listFactors(), listTwoLevelFactors()

These functions return the names of various classes of variables in a data set. Logical
variables and character variables are treated as if they are factors.

listVariables(dataSet=ActiveDataSet())

listNumeric(dataSet=ActiveDataSet())

listFactors(dataSet=ActiveDataSet())

listTwoLevelFactors(dataSet=ActiveDataSet())

Argument:

dataSet A character string giving the name of a data set. If missing, then the saved names
of variables for the active data set are returned.

listDataSets()

Lists the names of all data frames, by default currently residing in the global environment.

listDataSets(envir=.GlobalEnv, ...)

Arguments:

envir The environment in which to look.

... Ignored.

activeModel(), ActiveModel()

These functions set or retrieve the name of the active statistical model. They are largely
redundant; both are retained for backwards compatibility.

activeModel(model)

ActiveModel(name)

Arguments:

model A character string giving the name of the new active statistical model. If missing,
the name of the current active statistical model is returned, or, if there is no active model,
an error message is printed.

name A character string giving the name of the new active statistical model. If missing, the
name of the current active statistical model is returned, or, if there is no active model,
NULL is returned.

Appendix A 87

listAllModels(), listLinearModels(), listAOVModels(), listGeneralized-

LinearModels(), listMultinomialLogitModels(), listProportionalOddsMod-
els()

These functions list the names of all models in classes recognized by the R Commander, or
of models in a particular class, by default residing in the global environment.

listAllModels(envir=.GlobalEnv, ...)

listLinearModels(envir=.GlobalEnv, ...)

listAOVModels(envir=.GlobalEnv, ...)

listGeneralizedLinearModels (envir=.GlobalEnv, ...)

listMultinomialLogitModels(envir=.GlobalEnv, ...)

listProportionalOddsModels(envir=.GlobalEnv, ...)

Arguments:

envir The environment in which to look.

... Optional arguments, to be passed to the ls() function.

88 A Guide to the R Commander Utility Functions

A.4 Predicate Functions

A predicate function returns TRUE or FALSE depending upon whether some condition ob-
tains. Many R Commander predicate functions end with "P" (e.g., activeDataSetP(), fac-
torsP()), and either take no arguments or have only an optional argument. Some R Com-
mander predicate functions have names beginning with "check" (e.g., checkFactors()).

Predicate functions can be useful for determining whether a menu item should be in-
stalled, or, if installed, should be activated under current circumstances. They may also be
useful for checking various conditions in dialog callback functions.

A.4.1 Predicates Associated With Data Sets

activeDataSetP() Is there an active data set?
variablesP(n=1) Are there at least n variables in the active data set?
checkVariables(n=1) Are there at least n variables in the active data set?

Additionally print an error message if there are not.
numericP(n=1) Are there at least n numeric variables in the active data set?
checkNumeric(n=1) Are there at least n numeric variables in the active data set?

Additionally print an error message if there are not.
factorsP(n=1) Are there at least n factors in the active data set?
checkFactors(n=1) Are there at least n factors in the active data set?

Additionally print an error message if there are not.
twoLevelFactorsP(n=1) Are there at least n two-level factors in the active data set?
checkTwoLevelFactors(n=1) Are there at least n two-level factors in the active data set?

Additionally print an error message if there are not.
dataSetsP(n=1) Are there at least n data sets in memory?

A.4.2 Predicates Associated With Statistical Models

modelsP(n=1) Are there at least n statistical models
recognized by the R Commander in memory?

activeModelP() Is there an active statistical model?
lmP() Is the current statistical model an "lm" or "aov" object?

FALSE if there is no active model.
glmP() Is the current statistical model a "glm" object?

FALSE if there is no active model.
multinomP() Is the current statistical model a "multinom" object?

FALSE if there is no active model.
polrP() Is the current statistical model a "polr" object?

FALSE if there is no active model.
modelCapability(capability) Does the current statistical model have the Model menu

capability, as specified in the model-capability table?
FALSE if there is no active model.

Appendix A 89

A.4.3 Predicates Associated With Operating Systems

WindowsP() Is the R Commander running under Windows?
X11P() Is the R Commander running under X-Windows?
RappP() Is the R Commander running under Rapp on Mac OS X?
MacOSXP(release) Is the R Commander running under Mac OS X?

release is an optional version string; if specified returns
TRUE if the Mac OS X version ≥ release.

A.4.4 Other Predicates

checkClass(object, class, message=NULL) (macro)

Returns TRUE if the primary S3 class of an object matches.

object An R object.

class Character string naming an S3 class.

message Optional character string giving error message to print if the class doesn’t match;
if NULL a generic error message is composed.

exists.method(generic, object, default=TRUE, strict=FALSE)

Returns TRUE if an appropriate S3 method is located.

generic The quoted name of an R S3 generic function.

object An R object.

default Is it OK to use the default method for the given generic?

strict Is it not OK to inherit a method from another class?

checkMethod(generic, object, message=NULL, default=FALSE, strict=FALSE,

reportError=TRUE) (macro)

Returns TRUE if an appropriate S3 method is located; calls exists.method().

generic The quoted name of an R S3 generic function, typically (but not necessarily)
applicable to statistical models.

object An R statistical-model (or other) object.

message Optional character string giving error message to print if the class doesn’t match;
if NULL a generic error message making reference to a statistical-model class is composed.

default Is it OK to use the default method for the given generic?

strict Is it not OK to inherit a method from another class?

reportError Print an error message if a match isn’t found.

90 A Guide to the R Commander Utility Functions

is.valid.name(x)

Returns TRUE if the character string x is a valid R object name.

is.valid.number(string)

Returns TRUE if the character string string can be coerced to a valid (non-missing) numeric
object (e.g., a single number or a numeric vector).

packageAvailable(name)

Is the package name (given as a character string) available in an accessible library?

References

P. Dalgaard. A primer on the R-Tcl/Tk package. R News, 1(3):27–31, 2001. http://cran.r-
project.org/doc/Rnews/Rnews 2001-3.pdf.

P. Dalgaard. Changes to the R-Tcl/Tk package. R News, 2(3):25–27, 2002. https://cran.r-
project.org/doc/Rnews/Rnews 2002-3.pdf.

J. Fox. Extending the R Commander by “plug-in” packages. R News, 7(3):46–52, 2007.

J. Fox. Using the R Commander: A Point-and-Click Interface for R. Chapman & Hall/CRC
Press, Boca Raton FL, 2017.

J. Fox and M. Carvalho. The RcmdrPlugin.survival package: Extending the R Com-
mander interface to survival analysis. Journal of Statistical Software, 49(1):1–32, 2012.
URL http://www.jstatsoft.org/index.php/jss/article/view/v049i07.

M. E. Lawrence and J. Verzani. Programming Graphical User Interfaces in R. Chapman
and Hall/CRC Press, Boca Raton FL, 2012.

T. Lumley. Programmer’s niche: Macros in R. R News, 1(3):11–13, 2001.

J. K. Ousterhout and K. Jones. Tcl and the Tk Toolkit. Addison-Wesley, Upper Saddle
River NJ, second edition, 2010.

R Core Team. Writing R Extensions, 2016. Version 3.3.1.

B. D. Ripley. Internationalization features of R 2.1.0. R News, 5(1):2–7, 2005.

G. Snow. TeachingDemos: Demonstrations for Teaching and Learning, 2016. URL
https://CRAN.R-project.org/package=TeachingDemos. R package version 2.10.

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL http://CRAN.R-
project.org/package=survival. version 2.38.

T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model.
Springer, New York, 2000.

H. Wickham. R Packages: Organize, Test, Document, and Share Your Code. O’Reilly,
Sebastopol CA, 2015.

91

Author Index

Calza, S., 27
Carvalho, M., 1, 5, 19

Dalgaard, P., 1

Fox, J., 1, 5, 16, 17, 19

Grambsch, P. M., 19
Grosjean, P., 2

Heiberger, R., 8

Jones, K., 2

Lawrence, M. E., 23
Lumley, T., 27

Ousterhout, J. K., 2

R Core Team, 1
Ripley, B. D., 26

Snow, G., 9, 17

Therneau, T. M., 9, 19

Verzani, J., 23

Wettenhall, J., 2
Wickham, H., 1

93

Subject Index

.Rcmdr environment, 46, 81

accessor functions, 48
active data set, 3, 19, 29, 40, 48, 84, 85,

88
active model, 3, 85, 86, 88

button bar, for modeling dialogs, 55, 79
buttons, see also radio buttons

Apply, 23, 27, 29, 30, 32, 73
by-group, 78
Cancel, 3, 23, 24, 26, 27, 32, 39, 72,

73
Data set, 69
Help, 23, 24, 26, 27, 39, 73
natural spline, 51
OK, 3, 23, 24, 26, 27, 29, 32, 36, 39,

55, 66, 68, 72, 73, 75
Plot by, 40
Reset, 23, 27, 29, 30, 51, 73, 81

callback functions, 3, 9, 16, 23
centralLimitTheorem, 17
correlationTest, 27–30
CoxModel, 55, 57
debugging, 65
Histogram, 40, 43–45
linearModel, 51, 53, 54
loadLog, 16
loadPackages, 24, 26, 27
numericalSummaries, 65
onOK, 26, 29, 30, 32, 36, 39, 40, 52,

55, 66, 67, 71, 72
debugging, 66, 67

onOKsub, 39, 40, 72
reorderFactor, 36–38
Setwd, 15, 16
simulateConfidenceIntervals, 17
Survfit, 65–69
twoWayTable, 30, 32–35

cascade operation, for a menu, 13, 15
limitation of, 15

check boxes, 23, 30, 32, 74

combo box, 52, 76, 77
CRAN, 1, 2, 9

data sets
Adler, 30, 40
Duncan, 4, 27
Prestige, 48, 51, 52
Rossi, 55, 56, 66

dialogs
Correlation Test, 27, 28
Cox-Regression Model, 51, 55, 56
Groups, 41
Histogram, 40–42
Linear Model, 51, 52, 79
Load Packages, 24, 25
modal, 3
Read Data From Package, 4
Recorder Levels, 36
Reorder Factor Levels, 36, 40
Survival Function, 66, 68
Two-Way Table, 30–32

directories
data, 5, 6
doc, 5, 6
etc, 6
inst, 6
inst/etc, 5, 13, 61
man, 5, 6
po, 5
R, 5, 6
Rcmdr/etc, 13

double-clicks, suppressing, 55, 72

error message, 24, 30, 50, 65, 83, 86, 88,
89

export, from namespace, 9, 16, 65

file types
.R, 5, 6, 69
.Rd, 5, 6
.tar.gz, 2

files
CITATION, 6

95

96 Subject Index

debug-Rcmdr.R, 66, 70
DESCRIPTION, 5, 6, 9, 10, 51, 63, 64
Dialysis.rda, 6
etc/menus.txt, 7
globals.R, 6, 9, 12
inst/etc/menus.txt, 5
inst/etc/model-capabilities.txt,

5
menus.txt, 5, 6, 13, 16–20
model-capabilities.txt, 5, 6, 61–

63
NAMESPACE, 5, 6, 9, 11
NEWS, 5, 6
Rcmdr-menus.txt, 13, 14, 16, 17, 23,

57, 59, 61
Rcmdr-model-capabilities.txt, 57,

60, 61
Rossi.rda, 6
Survfit.R, 69

functions, see callback functions, macro-
like functions, predicate func-
tions, R functions, Rcmdr util-
ity functions

global objects, 9
GNU gettext, 26

import, from namespace, 9

knitr, 16, 82

Linux/Unix, 36, 65
listbox, 24, 26, 55, 76, 77

Mac OS X, 23, 36, 65, 89
macro-like functions, 9, 27, 32, 65, 66, 71
menu definition, 13
menu directives, 13–16
menu item definition, 13
menu items

activation of, 16, 19, 84
active, 3
inactive, 3
installation of, 17, 19
removal of, 13, 17

menu separator, 15
menus

Data, 3, 19
Data in packages, 4
Survival data, 19

Demos, 17, 19
Distributions, 17

Discrete distributions, 17, 19
Visualize distributions, 17, 19

Edit, 3
File, 3, 13–16

Exit, 13–16, 47
Models, 51, 57–59, 61

Graphs, 19
Numerical diagnostics, 19

Statistics, 3, 4, 19
Contingency tables, 3, 30
Fit models, 19, 51, 55
Means, 3
Summaries, 3, 4, 27
Survival analysis, 19

Summaries
Dimensional analysis, Cluster anal-

ysis, 3
Tools, 7, 24
top-level, 3, 4

modal dialog, 3
model formula, 51, 55, 72, 79

one-sided, 55
model number, current, 52, 80, 83
model objects, class of, 51, 57, 63
model-capabilities table, 57, 60, 61

notebook widget, 30

panes, see tabs and panes
parent menu, 15
Plot by widget, 40
predicate functions, 16, 19, 88

R, 1–3, 5, 7, 9, 13, 16, 19, 23, 24, 26, 27,
30, 47, 49–51, 65, 66, 69, 71, 79,
81, 82, 89, 90

R packages
car, 4, 61
Rcmdr, 1, 2, 7, 9, 13, 15–17, 19, 23,

46, 51, 55, 57, 59, 65, 66, 69–71,
81

sources for, 2, 23, 66
RcmdrPlugin.survival, 1, 2, 5, 6,

9–12, 16, 17, 19–21, 51, 55, 57,
61–66, 68, 69, 91

sources for, 2, 6
RcmdrPlugin.TeachingDemos, 1,

2, 5, 9–12, 17–19
sources for, 2

survival, 9, 19
tcltk, 1, 2, 9, 23, 26, 27, 29, 36, 71

Subject Index 97

tcltk2, 9
TeachingDemos, 9, 17, 91

R Commander, 1–5, 7–9, 13–17, 19, 21, 23,
24, 26, 27, 29, 30, 32, 36, 39, 40,
46–52, 55–61, 63, 65, 66, 69, 71,
72, 75, 76, 78–85, 87–89

menu bar, 3, 4, 13
options, 47, 76
toolbar, 3

R functions
.library, 24
.onAttach, 7, 8
args, 24
browser, 66
compareCoefs, 61
coxphP, 22
debug, 66
debugonce, 65, 66, 69
defmacro, 27
exportPattern, 9
globalVariables, 9
grid, 77
help, 26, 73
highOrderTermsP, 22
Hist, 40, 42
import, 9
importFrom, 9
library, 7, 24, 26
ls, 81
options, 47
plot.coxph, 9
read.table, 13
summary, 3
survregP, 22
tclvalue, 29
tclVar, 39
tkgrid, 26, 36, 39, 52, 55, 78
tkwait.window, 72
ttkcheckbutton, 36
unfold.data.frame, 9

R interpreter, 49
R Markdown, 16, 71, 82
radio buttons, 23, 27, 29, 55, 75
Rapp, 89
Rcmdr utility functions, 23, 51

activateMenus, 84
ActiveDataSet, 29, 48, 85
activeDataSet, 85
activeDataSetP, 19, 88
ActiveModel, 86
activeModel, 86

activeModelP, 88
checkBoxes, 32, 36, 74
checkClass, 89
checkFactors, 88
checkMethod, 89
checkNumeric, 88
checkReplace, 84
checkTwoLevelFactors, 88
checkVariables, 88
closeDialog, 26, 82
dataSetsP, 88
dialogSuffix, 26, 27, 30, 32, 55, 72,

73
doItAndPrint, 29, 49, 50, 82
errorCondition, 24, 26, 52, 83
exists.method, 89
Factors, 48, 76, 85
factorsP, 16, 19, 88
formulaFields, 80
getDialog, 27, 29, 48, 51, 81
getFrame, 26, 52, 77
getRcmdr, 16, 26, 47, 52, 80, 81
getSelection, 26, 77
gettextRcmdr, 26
glmP, 88
groupsBox, 40, 78
initializeDialog, 24, 27, 30, 39,

55, 71
is.valid.name, 90
is.valid.number, 90
justDoIt, 50, 82
Library, 26
listAllModels, 87
listAOVModels, 87
listDataSets, 86
listFactors, 86
listGeneralizedLinearModels, 87
listLinearModels, 87
listMultinomialLogitModels, 87
listNumeric, 86
listProportionalOddsModels, 87
listTwoLevelFactors, 86
listVariables, 86
lmP, 88
logger, 50, 82
MacOSXP, 89
Message, 83
modelCapability, 19, 57, 88
modelFormula, 51, 52, 55, 79
modelsP, 57, 88
multinomP, 88

98 Subject Index

Numeric, 29, 48, 76, 85
numericP, 88
OKCancelHelp, 26, 27, 30, 52, 66, 72,

73
packageAvailable, 17, 19, 90
polrP, 88
popCommand, 84
popOutput, 84
putDialog, 27, 29, 48, 51, 81
putRcmdr, 47, 81
radioButtons, 27, 29, 30, 32, 66, 75
RappP, 89
RcmdrTkmessageBox, 83, 84
setBusyCursor, 84
setIdleCursor, 84
subOKCancelHelp, 39, 73
subsetBox, 32, 52, 55, 79
titleLabel, 81
trim.blanks, 84
TwoLevelFactors, 85
twoLevelFactorsP, 88
UpdateModelNumber, 52, 80
variableComboBox, 52, 76, 77
variableListBox, 26, 27, 29, 76, 77
Variables, 26, 48, 76, 85
variablesP, 88
varPosn, 29, 76, 77
WindowsP, 89
X11P, 89

RcmdrModels: field, 5, 9, 51, 63, 64
RStudio, 65–67

S3, 89
self-starting plug-in package, 7, 8
state information, 16, 26, 29, 46, 48, 51,

52, 81
sub-dialog, 36, 39
Subset expression widget, 30, 32, 51, 52,

79

tabs, 30
tabs and panes

Data, 30–32, 41, 55, 56
knitr, 16, 49, 50
Messages, 24, 26, 30, 50, 65, 83
Model, 55, 56
Output, 29, 49, 50, 65, 82
R Markdown, 16, 29, 49, 50, 82
R Script, 3, 29, 49, 50, 82
Statistics, 30, 31

Tcl, 29, 32, 36, 39, 40, 55, 74, 75, 79

Tcl/Tk, 1–3, 23, 29, 71
text boxes, 55, 72
themed widgets, 36
Tk, 24, 26, 29, 30, 36, 39, 52, 66, 71, 72,

74–79, 82, 83
top-level menus, 3, 4
top-level widget, 24, 27
translation, of messages, 26
ttk, 81

warning message, 30, 50, 65
Windows, 5, 23, 36, 65, 89

X-Windows, 89

