Fitting Regression Models to Data From Complex Surveys

An Appendix to An R Companion to Applied Regression, third edition

John Fox & Sanford Weisberg

last revision: 2018-09-09

Abstract

In this appendix, we illustrate how to use the **survey** package for R to represent the design of a complex survey sample and to fit a regression model to survey data.

Most of the statistical models fit to data in the R Companion assume independently sampled observations. Notable exceptions are the mixed-effects models discussed in Chapter 7, which are for clustered hierarchical or longitudinal data. In Section 7.2.7, we also discuss "sandwich" standard errors for least-squares regression coefficients that take clustering into account. In this appendix, we explain how to use the **survey** package for R to fit statistical models to data from complex sample surveys.

1 Basic Ideas

Real survey samples drawn from finite populations don't produce strictly independent observations. The simplest survey-sampling scheme used in practice is simple random sampling (SRS), in which n cases are drawn randomly from a complete list of N members of the target population, without replacement and with equal probability of selection at each step. Thus, all of the $\binom{N}{n}$ subsets of cases of size n have the same probability of selection. In contrast to independent random sampling, in which individuals are replaced in the population list before each subsequent selection, the observations in SRS are dependent, but, unless the sampling fraction n/N is large (say 5% or greater), the dependencies induced are trivial and can be ignored.

Most sample surveys use more complex sampling schemes than SRS. To fix ideas, we refer to the 2011 Canadian Election Study (CES) campaign-period survey.¹ Sampling for this survey proceeded as follows:

- 1. The country was divided into *strata* defined by the 10 Canadian provinces.²
- 2. Within each provincial stratum j, a simple random sample of n_j households was selected using a *sampling frame* of household phone numbers. Canadian provinces are very unequal in population size, and so to facilitate inter-provincial comparisons, smaller provinces were relatively over-sampled—that is, the strata sampling fractions n_j/N_j differed. As a consequence, different households had unequal, but known, probabilities of selection into the sample.
- 3. The sampled households were contacted by phone and the number of eligible voters in each household was determined. In a second stage of sampling, 1 respondent was selected randomly and with equal probability from among the eligible voters in the household. Thus, individuals

¹The 2011 CES is described in detail in Fournier et al. (2013) and Northrup (2012).

²Because they are sparsely populated, voters residing in the three Canadian territories were not included in the target population of the survey.

in larger households had a smaller probability of selection into the sample than individuals in smaller households.

The eligible voters in a household constitute a *cluster*. If, at the final stage of sampling, had all the voters in each household been selected, then the survey would have employed *cluster sampling*. Cluster sampling typically induces non-trivial dependencies into the sample, making it less efficient (i.e., subject to greater sampling variation) than a simple random sample of the same size. In contrast, stratification generally produces samples that are modestly more efficient than SRS.

It's clear from the descriptions of the CES that each eligible voter in the population did not have an *equal* probability of selection into the sample. What's important, however, is that each individual have a *known* probability of selection. In analyzing the data, individuals in the sample are *weighted* in inverse proportion to their probability of selection, producing unbiased estimates of population characteristics. Weights may also be used to compensate for differential rates of global nonresponse to the survey (produced, e.g., by refusal to be interviewed or by failure to answer the phone). This procedure, which uses population data (e.g., from the Census) to adjust survey-sampling weights, is called *post-weighting*. The CES employed weights based on the differences in strata sampling fractions and household size.³ Unequal probabilities of selection generally produce a sample that's less efficient than a similar size simple random sample for estimating population-wide characteristics, but may yield more precise estimates for certain comparisons (e.g., inter-provincial comparisons in the CES).

In *multistage sampling*, there is more than one step entailing random selection. As mentioned, the CES used a relatively simple two-stage sampling procedure, with households within strata sampled in the first stage, and individuals within households sampled in the second stage.

When the sampling design of a survey induces substantial dependencies among the sampled observations, as in cluster sampling, it's important to take the dependencies into account in estimating sampling variation, for example, in computing regression-coefficient standard errors. More generally, if the object of a study is to estimate characteristics of real, finite population—for example, the population of Canadian voters residing in the 10 provinces at a particular point during the 2011 election campaign—then the sampling design should be taken into account. Had we access to the whole population, and therefore had the ability to fit a regression model to the population, then the parameters of the model would be known. Inference about these real-population parameters is termed *design-based inference*. In contrast, if the object of inference is the *process* that gave rise to the a real population, then even the coefficients of a model fit to the whole population are subject to statistical uncertainty, leading to what's termed *model-based inference*.

2 An Example: Attitudes Toward Abortion in the 2011 CES

Data drawn from the 2011 CES survey are available in the data set CES11 from the carData package:⁴

```
library("survey")
Loading required package: grid
Loading required package: Matrix
Loading required package: survival
```

```
Attaching package: 'survey'
```

³Sampling weights are to be distinguished from inverse-variance weights, used in weighted-least-squares regression to adjust for nonconstant error variance; for WLS regression, see Section 4.9.4 of the R Companion.

⁴This example is borrowed from Fox (2016, Sec. 15.5).

The following object is masked from 'package:graphics':									
	dotchart								
library("car")									
Loading required package: carData									
brief(CES11)									
2231 x 9 data.frame (2226 rows omitted)									
	id pro	vince p	opulation	weight	gender	abortion	importance	education	urban
	[i]	[f]	- [i]	[n]	[f]	[f]	- [f]	[f]	[f]
1	2851	BC	3267345	4287.85	Female	No	somewhat	somePS	urban
2	521	QC	5996930	9230.78	Male	No	not	bachelors	urban
3	2118	QC	5996930	6153.85	Male	Yes	somewhat	college	urban
2230	2488	BC	3267345	4287.85	Female	No	not	higher	urban
223	L 1368	MB	871460	5829.16	Male	No	not	HS	urban
CES11\$education <- factor(CES11\$education, levels=c("lessHS", "HS", "somePS", "college", "bachelors", "higher"))									

In addition to reading the data, we load the **survey** and **car** packages. We'll use several functions in the latter, and we need the former to define the sampling design and to fit a statistical model to the data.

The variables in the CES11 data set are as follows:

- id household ID number; were more than one individual sampled per household, this variable would define clusters.
- province standard two-character abbreviations for the 10 Canadian provinces, which define the strata of the sampling design.
- population the population size of the province in which each respondent resides, used to compute the *finite population correction* for coefficient estimates; because the sampling fractions in the strata are very small, these corrections are negligible.
- weight the sampling weight for each case, inversely proportional to the case's probability of selection; the weights are scaled so that they can be used to estimate population counts and totals, but the scaling doesn't affect the estimates that we report below.
- gender a factor with levels "Female" and "Male".
- abortion a factor derived from the question, "Should abortion be banned?" with levels "No" and "Yes".
- importance a factor derived from the question, "In your life, would you say that religion is very important, somewhat important, not very important, or not important at all?" asked only of respondents who reported that they had a religion; respondents with no religion were assigned the response "not important at all"; the levels of the factor are coded "not", "notvery", "somewhat", and "very".
- education a factor with levels "lessHS" (less than high school), "HS" (high-school graduate), "somePS" (some post-secondary), "college" (degree from a community college or technical institute), "bachelors" (Bachelor's degree), and "higher" (Master's or Doctorate); we redefine the factor to put its levels in their natural (i.e., non-alphabetical) order.

urban a factor with levels "rural" and "urban".

Prior to analyzing the data we must establish the survey sampling design, via the svydesign() function in the survey package, producing an object that includes the CES11 data frame along with information about the survey design:

CES.svy <- svydesign(ids=~id, strata=~province, fpc=~population, weights=~weight, data=CES11)

The svydesign() function, and the survey package more generally, are very powerful and general, accomodating many different kinds of designs for complex surveys. The survey package is extensively documented by its author in Lumley (2010), which is slightly out-of-date but is supplemented by vignettes in the package.⁵ We used several arguments in the call to svydesign(), not all of which are strictly required:

ids a one-sided formula that defines the clusters in the sampling design. Because theere's only 1 observation per cluster in the CES data set, we could have specified ids=~0 (see below), indicating no clustering. In a more complex sampling design there may be clusters selected a several stages.

strata a formula defining the strata, in our case by province.

- fpc a formula with information for computing the finite population correction, given here as the population size of each respondent's stratum; because the sample in each province is a tiny fraction of the population, this argument could be omitted with virtually no effect.
- weights a formula specifying the sampling weights for the cases, given by the variable weight in the CES11 data set.

data the data frame containing the data, CES11.

We wish to perform a binary logistic regression of attitude toward **abortion** on the survey respondents' gender, level of education, urban versus rural residence, and the importance attached to religion. First, however, let's examine the distribution of the response factor, **abortion**, in two ways: from the original data set, which effectively ignores the sampling design, and using the survey-design object that we created:

The results in this case are very similar: About 81.5% of respondents oppose banning abortion. Perhaps counterintuitively, we use the svymean() function from the survey package to compute the design-based estimate of the distribution of the factor abortion, which generates 0/1 dummy variables for each of the two categories of the factor. The mean of a 0/1 variable is the proprion of 1s. The svymean() function also reports the standard error of each proportion. The standard error of a proportion p in an independent random sample is $SE(p) = \sqrt{p(1-p)/n}$.

⁵See vignette(package="survey") for a list of vignettes, which can then be referenced by name—e.g., vignette("survey"); also see help("svydesign").

We fit the logistic-regression model with the svyglm() function from the survey package.⁶ A slight wrinkle is that we must use the quasibinomial rather than the binomial family to avoid a warning about noninteger counts produced by the use of differential sampling weights (reader: try it!):

```
mod.abortion.svy <- svyglm(abortion ~ importance + gender + education + urban,</pre>
                          design=CES.svy, family=quasibinomial)
summary(mod.abortion.svy)
 Call:
 svyglm(formula = abortion ~ importance + gender + education +
    urban, design = CES.svy, family = quasibinomial)
 Survey design:
 svydesign(ids = ~id, strata = ~province, fpc = ~population, weights = ~weight,
     data = CES11)
 Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
 (Intercept)
                    -2.5977 0.3223 -8.059 1.25e-15
 importancenotvery 0.4579 0.3478 1.317 0.18812
 importancesomewhat 1.3265 0.2714 4.887 1.10e-06
                    3.1414 0.2618 12.000 < 2e-16
 importancevery
                    0.3280
                                       2.211 0.02712
                              0.1483
 genderMale
 educationHS
                    -0.4446
                               0.2385 -1.864 0.06240
 educationsomePS
                    -0.8521
                               0.2900 -2.938 0.00334
 educationcollege
                    -0.5623
                               0.2395 -2.348 0.01897
                                0.2501 -3.919 9.15e-05
 educationbachelors -0.9802
                                0.3089 -2.187 0.02887
 educationhigher
                    -0.6754
                    -0.2830
                                0.1661 -1.704 0.08861
 urbanurban
 (Dispersion parameter for quasibinomial family taken to be 0.9724821)
 Number of Fisher Scoring iterations: 5
Anova(mod.abortion.svy)
 Analysis of Deviance Table (Type II tests)
 Response: abortion
           \mathtt{Df}
                 Chisq Pr(>Chisq)
 importance 3 253.6117 < 2.2e-16
 gender
            1 4.8899
                        0.027014
            5 17.8308
                         0.003166
 education
                         0.088474
                2.9019
 urban
            1
```

The Anova() function in the **car** package, along with **deltaMethod()** and **linearHypothesis()**, knows how to handle "svyglm" objects, producing by default type-II Wald tests.⁷

Let's compare these design-based results to the the model-based results obtained by using glm() to fit the logistic regression to the original CES11 data set:

 $^{^{6}}$ See apropos("^svy*") and the correspond help files for other functions that may be applied to survey-design objects.

 $^{^{7}}$ Although we don't require it here, the **effects** package also includes methods for displaying models fit by svyglm().

```
Calls:
 1: svyglm(formula = abortion ~ importance + gender + education + urban, design =
  CES.svy, family = quasibinomial)
 2: glm(formula = abortion ~ importance + gender + education + urban, family =
  binomial, data = CES11)
                    Model 1 Model 2
 (Intercept)
                     -2.598 -2.545
 SE
                      0.322
                             0.280
importancenotvery
                              0.442
                      0.458
SE
                              0.310
                      0.348
                              1.203
 importancesomewhat
                      1.327
SE
                      0.271
                              0.235
importancevery
                      3.141
                              2.977
SE
                      0.262
                              0.225
                      0.328
                              0.375
genderMale
SE
                      0.148
                              0.127
                     -0.445
                             -0.322
educationHS
SE
                      0.238
                              0.194
 educationsomePS
                     -0.852 -0.651
                             0.235
SE
                      0.290
educationcollege
                     -0.562 -0.508
SE
                      0.240
                              0.199
 educationbachelors -0.980 -0.901
SE
                      0.250
                              0.208
 educationhigher
                     -0.675 -0.937
                              0.266
SE
                      0.309
urbanurban
                     -0.283 -0.306
SE
                      0.166
                              0.136
Anova(mod.abortion, test.statistic="Wald")
Analysis of Deviance Table (Type II tests)
Response: abortion
           Df
                  Chisq Pr(>Chisq)
importance 3 311.3160 < 2.2e-16
gender
            1
                8.6737
                          0.003228
 education
             5 25.2797
                          0.000123
urban
             1
                 5.0844
                          0.024142
```

Here, for greater comparability, we specify the argument test.statistic="Wald" to Anova() to get type-II Wald statistics rather than the default likelihood-ratio tests for a GLM. The pattern of results for the design-based and model-based estimates are similar: Holding the other predictors constant, opposition to abortion increases with the importance of religion; is greater for males than for females, is generally higher at lower levels of education (although the relationship to education)

isn't monotone), and is lower among urban than rural residents. The coefficient standard errors for the design-based estimates are larger, however, reflecting the unequal probabilities of selection for the respondents, and, partly as a consequence, the p-values for the tests of the various terms in the model are larger for the design-based estimates.

Finally, we verify that with one respondent per household cluster and very small sampling fractions for the provincial strata, it isn't really necessary to specify the ids and fpc arguments in defining the survey design:

```
CES.svy.2 <- svydesign(ids=~0, strata=~province, weights=~weight, data=CES11)
mod.abortion.svy.2 <- svyglm(abortion ~ importance + gender + education + urban,</pre>
                             design=CES.svy.2, family=quasibinomial)
compareCoefs(mod.abortion.svy, mod.abortion.svy.2)
 Calls:
 1: svyglm(formula = abortion ~ importance + gender + education + urban, design =
   CES.svy, family = quasibinomial)
 2: svyglm(formula = abortion ~ importance + gender + education + urban, design =
   CES.svy.2, family = quasibinomial)
                    Model 1 Model 2
 (Intercept)
                     -2.598 -2.598
 SE
                      0.322
                            0.322
                             0.458
 importancenotvery
                      0.458
 SE
                      0.348
                              0.348
 importancesomewhat
                      1.327
                              1.327
 SE
                      0.271
                              0.271
 importancevery
                      3.141
                              3.141
 SE
                      0.262
                              0.262
 genderMale
                      0.328
                              0.328
 SE
                      0.148
                              0.148
                     -0.445 -0.445
 educationHS
                              0.238
 SE
                      0.238
 educationsomePS
                     -0.852 -0.852
                      0.290
                              0.290
 SE
 educationcollege
                     -0.562 -0.562
 SE
                      0.240
                              0.240
                      -0.98
                              -0.98
 educationbachelors
 SE
                       0.25
                             0.25
 educationhigher
                     -0.675 -0.675
 SE
                      0.309
                             0.309
                     -0.283 -0.283
 urbanurban
 SE
                      0.166
                            0.166
```

3 Complementary Reading and References

There is a vast literature on conducting and analyzing data from sample surveys. We mention only a few key references here.

- Lumley (2010) is the definitive reference for the **survey** package, and it also provides a good, accessible general introduction to survey sampling and estimation.
- Groves et al. (2011) is a wide-ranging introductory text on survey methods, including sampling.
- Fuller (2009) provides an extensive, if technical, treatment of survey sampling and estimation.

References

- Fournier, P., Cutler, F., Soroka, S., and Stolle, D. (2013). Canadian Election Study 2011: Study documentation. Technical report, Canadian Opinion Research Archive, Queen's University, Kingson, Ontario.
- Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models. Sage, Thousand Oaks CA, third edition.
- Fuller, W. A. (2009). Sampling Statistics. Wiley, Hoboken NJ.
- Groves, R. M., Fowler Jr., F. J., Couper, M. P., Lepkowski, J. M., Singer, E., and Tourangeau, R. (2011). *Survey Methodology*. Wiley, Hoboken NJ, second edition.
- Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons, Hoboken, NJ.
- Northrup, D. (2012). The 2011 Canadian Election Survey: Technical documention. Technical report, Institute for Social Research, York University, Toronto, Ontario.