
Bootstrapping Regression Models in R

An Appendix to An R Companion to Applied Regression, third edition

John Fox & Sanford Weisberg

last revision: 2018-09-21

Abstract

The bootstrap is a general approach to statistical inference based on building a sampling
distribution for a statistic by resampling repeatedly from the data at hand. This appendix to
the R Companion (Fox and Weisberg, 2019) briefly describes the rationale for the bootstrap
and explains how to bootstrap regression models, primarily using the Boot() function in the
car package. The appendix augments the coverage of the Boot() function in the R Companion.
Boot() provides a simple way to access the powerful boot() function (lower-case “b”) in the
boot package, which is also briefly described in this appendix.

1 Basic Ideas

The bootstrap is a general approach to statistical inference based on building a sampling distribution
for a statistic by resampling repeatedly from the data at hand. The term “bootstrapping,” due to
Efron (1979), is an allusion to the expression “pulling oneself up by one’s bootstraps,” in this case,
using the sample data as a population from which repeated samples are drawn. At first blush, the
approach seems circular, but has been shown to be sound.

At least two R packages for bootstrapping are associated with extensive treatments of the subject:
Efron and Tibshirani’s (1993) bootstrap package (Tibshirani and Leisch, 2017), and Davison and
Hinkley’s (1997) boot package. Of the two, boot, programmed by A. J. Canty (Canty and Ripley,
2017), is somewhat more capable and is a part of the standard R distribution. The bootstrap is
potentially very flexible and can be used in many different ways, and as a result using the boot
package requires some programming. In this appendix we will mostly discuss the car function
Boot(), which provides a simplified front-end to the boot package. The use of Boot() is described
more briefly in Section 5.1.3 of the R Companion. This appendix develops the topic of bootstrapping
regression models in R in greater detail.

Confusion alert: Boot() with a capital “B” is a function in the car package,
and is the primary function used in this appendix. It is really just a convenience
function that calls the boot() function with a lower-case “b” in a package that
is also called boot, also with a lower-case “b”. We hope you will get a kick out
of all the boots.

There are several forms of the bootstrap, and, additionally, several other resampling methods
that are related to it, such as jackknifing, cross-validation, randomization tests, and permutation
tests. We will stress the nonparametric bootstrap.

Suppose that we draw a sample S = {X1, X2, ..., Xn} from a population P = {x1, x2, ..., xN};
imagine further, at least for the time being, that N is very much larger than n, and that S is a

1

simple random sample.1 We will briefly consider other sampling schemes at the end of the appendix.
It is helpful initially to think of the elements of the population and, hence, of the sample, as scalar
values, but they could just as easily be vectors.

Suppose that we are interested in some statistic T = t(S) as an estimate of the corresponding
population parameter θ = t(P). Again, θ could be a vector of parameters and T the corresponding
vector of estimates, but for simplicity assume that θ is a scalar. A traditional approach to statistical
inference is to make assumptions about the structure of the population, such as an assumption of
normality, and, along with the stipulation of random sampling, to use these assumptions to derive
the sampling distribution of T , on which classical inference is based. In certain instances, the exact
distribution of T may be intractable, and so we instead derive its asymptotic distribution. This
familiar approach has two potentially important deficiencies:

1. If the assumptions about the population are wrong, then the corresponding sampling distribu-
tion of the statistic may be seriously inaccurate. If asymptotic results are relied upon, these
may not hold to the required level of accuracy in a relatively small sample.

2. The approach requires sufficient mathematical prowess to derive the sampling distribution of
the statistic of interest. In some cases, such a derivation may be prohibitively difficult.

In contrast, the nonparametric bootstrap allows us to estimate the sampling distribution of a
statistic empirically without making assumptions about the form of the population, and without
deriving the sampling distribution explicitly. The essential idea of the nonparametric bootstrap is as
follows: We proceed to draw a sample of size n from among the elements of the sample S, sampling
with replacement. Call the resulting bootstrap sample S∗1 = {X∗11, X∗12, ..., X∗1n}. It is necessary to
sample with replacement because we would otherwise simply reproduce the original sample S. In
effect, we are treating the sample S as an estimate of the population P; that is, each element Xi of
S is selected for the bootstrap sample with probability 1/n, mimicking the original selection of the
sample S from the population P. We repeat this procedure a large number of times, R, selecting
many bootstrap samples; the bth such bootstrap sample is denoted S∗b = {X∗b1, X∗b2, ..., X∗bn}.

The key bootstrap analogy is therefore as follows:

The population is to the sample
as

the sample is to the bootstrap samples.

Next, we compute the statistic T for each of the bootstrap samples; that is T ∗b = t(S∗b). Then
the distribution of T ∗b around the original estimate T is analogous to the sampling distribution of
the estimator T around the population parameter θ. For example, the average of the bootstrapped
statistics,

T
∗

= Ê∗(T ∗) =

∑R
b=1 T

∗
b

R

estimates the expectation of the bootstrapped statistics; then B̂∗ = T
∗ − T is an estimate of the

bias of T , that is, T − θ. Similarly, the estimated bootstrap variance of T ∗,

V̂ar
∗
(T ∗) =

∑R
b=1(T ∗b − T

∗
)2

R− 1

1Because N is much larger than n, a simple random sample is essentially equivalent to an independent random
sample. Alternatively, P could be an infinite population, specified, for example, by a probability distribution function.

2

estimates the sampling variance of T . The square root of this quantity

ŜE
∗
(T ∗) =

√∑R
b=1(T ∗b − T

∗
)2

R− 1

is the bootstrap estimated standard error of T .
The random selection of bootstrap samples is not an essential aspect of the nonparametric boot-

strap, and at least in principle we could enumerate all bootstrap samples of size n. Then we could
calculate E∗(T ∗) and Var∗(T ∗) exactly, rather than having to estimate them. The number of boot-
strap samples, however, is astronomically large unless n is tiny.2 There are, therefore, two sources
of error in bootstrap inference: (1) the error induced by using a particular sample S to represent the
population; and (2) the sampling error produced by failing to enumerate all bootstrap samples. The
latter source of error can be controlled by making the number of bootstrap replications R sufficiently
large.

2 Bootstrap Confidence Intervals

There are several approaches to constructing bootstrap confidence intervals. The normal-theory
interval assumes that the statistic T is normally distributed, which is often approximately the case
for statistics in sufficiently large samples, and uses the bootstrap estimate of sampling variance, and
perhaps of bias, to construct a 100(1− α)% confidence interval of the form

θ = (T − B̂∗)± z1−α/2ŜE
∗
(T ∗)

where z1−α/2 is the 1 − α/2 quantile of the standard-normal distribution (e.g., 1.96 for a 95%
confidence interval, when α = .05).

An alternative approach, called the bootstrap percentile interval, is to use the empirical quantiles
of T ∗b to form a confidence interval for θ:

T ∗(lower) < θ < T ∗(upper)

where T ∗(1), T
∗
(2), . . . , T

∗
(R) are the ordered bootstrap replicates of the statistic; lower = [(R+ 1)α/2];

upper = [(R + 1)(1 − α/2)]; and the square brackets indicate rounding to the nearest integer. For
example, if α = .05, corresponding to a 95% confidence interval, and R = 999, then lower = 25 and
upper = 975.

The bias-corrected, accelerated (or BC a) percentile intervals perform somewhat better than the
percentile intervals just described. To find the BCa interval for θ:

� Calculate the correction factor

z = Φ−1

R

#
b=1

(T ∗b ≤ T)

R+ 1

where Φ−1(·) is the standard-normal quantile function, and # (T ∗b ≤ T) /(R + 1) is the (ad-
justed) proportion of bootstrap replicates at or below the original-sample estimate T of θ. If
the bootstrap sampling distribution is symmetric, and if T is unbiased, then this proportion
will be close to .5, and the correction factor z will be close to 0.

2If we distinguish the order of elements in the bootstrap samples and treat all of the elements of the original
sample as distinct (even when some have the same values) then there are nn bootstrap samples, each occurring with
probability 1/nn.

3

� Let T(−i) represent the value of T produced when the ith case is deleted from the sample;3 there

are n of these quantities. Let T represent the average of the T(−i); that is T =
∑n
i=1 T(−i)/n.

Then calculate a second correction factor

a =

∑n
i=1

(
T − T(−i)

)3
6
[∑n

i=1

(
T(−i) − T

)2] 3
2

� With the correction factors z and a in hand, compute

a1 = Φ

[
z +

z − z1−α/2
1− a(z − z1−α/2)

]
a2 = Φ

[
z +

z + z1−α/2

1− a(z + z1−α/2)

]
where Φ(·) is the standard-normal cumulative distribution function. The values a1 and a2 are
used to locate the endpoints of the corrected percentile confidence interval:

T ∗(lower*) < θ < T ∗(upper*)

where lower* = [Ra1] and upper* = [Ra2]. When the correction factors a and z are both 0,
a1 = Φ(−z1−α/2) = Φ(zα/2) = α/2, and a2 = Φ(z1−α/2) = 1− α/2, which corresponds to the
(uncorrected) percentile interval.

To obtain sufficiently accurate 95% bootstrap percentile or BCa confidence intervals, the number
of bootstrap samples, R, should be on the order of 1000 or more; for normal-theory bootstrap
intervals we can get away with a smaller value of R, say, on the order of 100 or more, because all we
need to do is estimate the standard error of the statistic.

3 Bootstrapping Regressions

Recall from Chapters 1 and 8 of the R Companion Duncan’s regression of prestige on income and
education for 45 occupations, with data from the Duncan data set in the carData package.4 In the
on-line appendix on robust regression, we refit this regression using an M -estimator with the Huber
weight function, employing the rlm() function in the MASS package:

library("car")

Loading required package: carData

library("MASS")

mod.duncan.hub <- rlm(prestige ~ income + education, data=Duncan, maxit=200)

summary(mod.duncan.hub)

Call: rlm(formula = prestige ~ income + education, data = Duncan, maxit = 200)

Residuals:

3The T(−i) are called the jackknife values of the statistic T . Although we will not pursue the subject here, the
jackknife values can also be used as an alternative to the bootstrap to find a nonparametric confidence interval for θ.

4R functions used but not described in this appendix are discussed in Fox and Weisberg (2019). All the R code
in this appendix can be downloaded from http://tinyurl.com/carbook. Alternatively, if you are running R and
attached to the internet, load the car package and enter the command carWeb(script="appendix-bootstrap") to
view the R command file for the appendix in your browser.

4

Min 1Q Median 3Q Max

-30.12 -6.89 1.29 4.59 38.60

Coefficients:

Value Std. Error t value

(Intercept) -7.111 3.881 -1.832

income 0.701 0.109 6.452

education 0.485 0.089 5.438

Residual standard error: 9.89 on 42 degrees of freedom

The coefficient standard errors reported by rlm() rely on asymptotic approximations, and may not
be trustworthy in a sample of size 45. Let us turn, therefore, to the bootstrap. We set the maxit

argument to rlm() to 200, larger than the default value of 20, in anticipation of the bootstrap,
because some of the bootstrap samples may need more iterations to converge.

There are two general ways to bootstrap a regression like this: We can treat the predictors as
random, potentially changing from sample to sample, or as fixed. We will deal with each approach in
turn, and then compare the two approaches. For reasons that should become clear in the subsequent
sections, random-x resampling is also called case resampling, and fixed-x resampling is also called
residual resampling. In the R Companion, we describe only the case-resampling bootstrap.

3.1 Random-x or Case Resampling

Broadening the scope of the discussion, assume that we want to fit a regression model with response
variable y and predictors x1, x2, . . . , xk. We have a sample of n cases z′i = (yi,xi1, xi2, . . . , xik),
i = 1, . . . , n.5 In random-x or case resampling, we simply select R bootstrap samples of the z′i,
fitting the model and saving the coefficients from each bootstrap sample. This is the default method
used by the Boot() function in car.

The Boot() function takes a number of argument, five of which we describe here:

Boot(object, f=coef, labels=names(f(object)), R=999,

method=c("case", "residual"), ...)

� Only the first argument is required, and it must be a regression-model object such as the
object mod.duncan.hub we just created by the call to rlm(). We will discuss in Section 5 the
conditions that need to be satisfied for a model object to work with the Boot() function.

� The argument f is a function that will be computed for the model on each bootstrap replication.
The default is the coef() function, which for most regression objects returns the vector of
regression coefficient estimates. Setting this argument to f=coef therefore means that the
coefficient estimates are computed and saved for each bootstrap replication. If, alternatively,
you want the bootstrap distribution for the scale factor in an rlm() fit, you can use f=sigmaHat,
because the car function sigmaHat() returns the scale factor. You can save both the regression
coefficients and the scale factor with the anonymous function f=function(mod){c(coef(mod),

sigmaHat(mod))}.

� The labels argument to Boot() provides names for the quantities that are kept on each
bootstrap iteration. If not set, the function selects labels automatically. In the default case of
f=coef, the function uses the coefficient names but in other cases the default labels used may
not be very descriptive. For example, labels=c(names(coef(mod)), "sigmaHat") would be
appropriate if f returns both coefficient estimates and the scale estimate.

5If you’re unfamiliar with vector notation, simply think of z′i as the values of y and the xs for the ith case.

5

� The next argument, method, can be set either to "case", the default, for case resampling, or
to "residual", for residual resampling, which is discussed later in this appendix.

� Finally, the ... (ellipses) argument permits passing additional arguments to the boot()

function.

For the example of Duncan’s data fit with a Huber M estimate, we specify

set.seed(12345) # for reproducibility

system.time(duncan.boot <- Boot(mod.duncan.hub, R=1999))

Loading required namespace: boot

user system elapsed

3.73 0.00 4.38

We ran Boot() within a call to the system.time() function to provide a sense of how long a
bootstrapping operation like this takes. In this case, we generated R = 1999 bootstrap replicates of
the regression coefficients. The first number returned by system.time is the CPU (processing) time
for the operation, in seconds, while the third number is the total elapsed time. Here, both CPU and
elapsed time are several seconds.6 Although this is a small problem, the time spent depends more
upon the number of bootstrap samples than upon the sample size. There are two ways to think
about waiting several seconds for the bootstrapping to take place: On the one hand, we tend to
be spoiled by the essentially instantaneous response that R usually provides, and by this standard
several seconds seems a long time. On the other hand, bootstrapping is not an exploratory procedure,
and a brief wait is a trivial proportion of the time typically spent on a statistical investigation.

The Boot() function returns an object, here boot.duncan, of class "boot". The car package
includes a summary() method for "boot" objects:

summary(duncan.boot, high.moments=TRUE)

Number of bootstrap replications R = 1999

original bootBias bootSE bootMed bootSkew bootKurtosis

(Intercept) -7.111 0.13965 3.100 -6.937 0.12191 0.258

income 0.701 -0.01274 0.179 0.715 -0.19903 0.357

education 0.485 0.00699 0.139 0.481 0.00321 0.678

The summary shows the original sample value for each component of the bootstrapped statistics,
along with the bootstrap estimates of bias, the difference T

∗− T between the average bootstrapped
value of the statistic and its original-sample value. The bootstrap estimates of standard error

[ŜE
∗
(T ∗)] are computed as the standard deviation of the bootstrap replicates. As explained in the

previous section, these values may be used to construct normal-theory confidence intervals for the
regression coefficients. In this example the bootstrap standard errors of the income and educa-

tion coefficients are substantially larger than the asymptotic standard errors reported by rlm().
The bootstrap estimates of skewness and kurtosis are included in the output by the argument
high.moments=TRUE; the default is FALSE. See help("summary.boot") for additional arguments to
the summary() method for "boot" objects.

The vcov() function returns the estimated covariance matrix of the boostrap estimates:

vcov(duncan.boot)

6The time will vary slightly from run to run, and more substantially depending on hardware and operating system.

6

(Intercept) income education

(Intercept) 9.610472 -0.026597 -0.102245

income -0.026597 0.031878 -0.023215

education -0.102245 -0.023215 0.019314

This coefficient covariance matrix may be used in further computations, for example, by the Anova(),
linearHypothesis(), deltaMethod(), and Confint() functions in the car package.

The car package also includes a Confint (and a confint()) method to produce confidence
intervals for "boot" objects:

Confint(duncan.boot, level=.90, type="norm")

Bootstrap normal confidence intervals

Estimate 5 % 95 %

(Intercept) -7.11070 -12.34953 -2.15118

income 0.70145 0.42051 1.00787

education 0.48544 0.24985 0.70704

Confint(duncan.boot, parm=2:3, level=c(.68, .90, .95), type="perc")

Bootstrap percent confidence intervals

Estimate 2.5 % 5 % 16 % 84 % 95 % 97.5 %

income 0.70145 0.31605 0.37639 0.49613 0.84406 0.95393 1.01917

education 0.48544 0.22105 0.27994 0.37024 0.63166 0.72975 0.77953

Confint(duncan.boot, level=.95, type="bca")

Bootstrap bca confidence intervals

Estimate 2.5 % 97.5 %

(Intercept) -7.11070 -12.95870 -1.31332

income 0.70145 0.22096 0.94148

education 0.48544 0.27432 0.83105

The first of these examples uses normal theory with the bootstrap standard errors. The second
example uses the percentile method, and gives the quantiles for a number of intervals simultaneously.
The final example uses the BCa method, which is the default if no arguments beyond the first are
provided in the call to the Confint() function.

A graphical view of the bootstraps can be obtained with the hist() function, as shown in
Figure 1, drawn by

hist(duncan.boot, legend="separate")

There is a separate histogram for each bootstrapped quantity, here each coefficient. In addition to
the histograms we also get kernel density estimates and the normal density based on the bootstrap
mean and standard deviation. The vertical dashed line marks the original point-estimate, and the
thick horizontal line gives a confidence interval based on the bootstrap. Whereas the two density
estimates for the intercept are similar, the normal approximation is poor for the other coefficients,
and confidence intervals are not close to symmetric about the original values. This suggests that
inference from the bootstrap is different from the asymptotic theory, and that the bootstrap is likely
to be more accurate in this small sample. See help("hist.boot") for additional arguments to
hist().

7

(Intercept)

D
en

si
ty

−15 −10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

income

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

education

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

Bootstrap histograms

fitted normal density
Kernel density est
95% bca confidence interval
Observed value of statistic

Figure 1: Case bootstrap histograms.

We next use the dataEllipse() function from the car package to examine the joint distribution
of the bootstrapped income and education coefficients. The function draws a scatterplot of the
pairs of coefficients, with bivariate-normal concentration ellipses superimposed (Figure 2):

dataEllipse(duncan.boot$t[, 2], duncan.boot$t[, 3],

xlab="income coefficient", ylab="education coefficient",

cex=0.3, levels=c(.5, .95, .99), robust=TRUE)

The first two arguments to dataEllipse() are duncan.boot$t[, 2] and duncan.boot$t[, 3],
which are the vectors of bootstraps for the second and third coefficients, for income and education.

3.2 Additional Functionality From the boot Package

The objects created by the Boot() function can also be examined with all the helper functions that
are included in the boot package. For example, if you simply print the object,

library("boot")

duncan.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

8

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

income coefficient

ed
uc

at
io

n
co

ef
fic

ie
nt

Figure 2: Scatterplot of bootstrap replications of the income and education coefficients from the
Huber regression for Duncan’s occupational-prestige data. The concentration ellipses are drawn
at the 50, 90, and 99% levels for a bivariate-normal distribution using a robust estimate of the
covariance matrix of the coefficients.

boot::boot(data = dd, statistic = boot.f, R = R, .fn = f, parallel = parallel_env,

ncpus = ncores)

Bootstrap Statistics :

original bias std. error

t1* -7.11070 0.1396526 3.10008

t2* 0.70145 -0.0127390 0.17854

t3* 0.48544 0.0069931 0.13897

the resulting output is from the print() method provided by the boot package for "boot" objects.
This is similar to the summary.boot() method from the car package, but the labels are less infor-
mative. The boot.array() function returns an R× n matrix in which the entry in row b, column i
indicates how many times the ith case appears in the bth bootstrap sample:

duncan.array <- boot.array(duncan.boot)

duncan.array[1:2,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 0 2 1 2 0 0 1 0 2 1 3 2 3 1

[2,] 2 2 1 1 2 0 0 0 0 2 2 1 0 2

[,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27]

[1,] 2 0 1 1 1 2 1 1 0 1 0 1 3

[2,] 1 3 1 0 0 0 0 0 0 2 2 1 0

[,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40]

[1,] 2 0 0 1 1 1 0 0 2 1 0 0 0

[2,] 1 0 2 0 2 1 2 3 0 2 1 1 1

[,41] [,42] [,43] [,44] [,45]

9

[1,] 2 2 1 0 0

[2,] 1 1 1 0 1

Thus, for example, case 1 appears twice in the second bootstrap sample, but not at all in the first
sample.

The (unfortunately named) jack.after.boot() function displays a diagnostic jackknife-after-
bootstrap plot. This plot shows the sensitivity of the statistic and of the percentiles of its boot-
strapped distribution to deletion of individual cases. An illustration, for the coefficients of income

and education, appears in Figure 3, which is produced by the following commands:

par(mfcol=c(2, 1))

jack.after.boot(duncan.boot, index=2, main="(a) income coefficient")

jack.after.boot(duncan.boot, index=3, main="(b) education coefficient")

The horizontal axis of the graph, labeled “standardized jackknife value,” is a measure of the
influence of each case on the coefficient. The case indices corresponding to the points in the graph
are shown near the bottom of the plot. Thus cases 6 and 16 serve to decrease the income coefficient
and increase the education coefficient. As is familiar from Chapters 1 and 8 of the R Companion,
these are the problematic occupations minister and railroad-conductor.

The horizontal broken lines on the plot are quantiles of the bootstrap distribution of each coeffi-
cient, centered at the value of the coefficient for the original sample. By default the .05, .10, .16, .50,
.84, .90, and .95 quantiles are plotted. The points connected by solid lines show the quantiles esti-
mated only from bootstrap samples in which each case in turn did not appear. Therefore, deleting
the occupation minister or conductor makes the bootstrap distributions for the coefficients slightly
less dispersed. On the other hand, removing occupation 27 (railroad-engineer) or 30 (plumber) makes
the bootstrap distributions somewhat more variable. From our earlier work on Duncan’s data (see,
in particular, Chapter 8), we recognize railroad-engineer as a high-leverage but in-line occupation;
it is unclear to us, however, why the occupation plumber should stand out in this manner.

Objects of class "boot" have their own plot() method that differs from the hist() method de-
scribed above. Additionally, the boot.ci() function is useful for comparing methods for generating
confidence intervals but less useful for data analysis. There are several other functions in the boot
package for working with "boot" objects; see help("boot").

3.3 Bypassing the Boot() Function

In this section we show how to use boot() directly for bootstrapping. For regression problems in
which the data are sampled independently, this will generally be unnecessary, as Boot() provides
sufficient functionality, but boot() is useful for other problems, for example, for bootstrapping the
distribution of a sample median. You also have to call boot() directly when the data are generated
from a complex sampling design, a subject to which we return briefly in Section 6. For these and
similar purposes you must write a function that computes what’s needed for each bootstrap sample.

Here is an example that corresponds to what Boot() does by default:

boot.huber <- function(data, indices, maxit=20){

data <- data[indices,] # select cases in bootstrap sample

mod <- rlm(prestige ~ income + education, data=data, maxit=maxit) # refit model

coef(mod) # return coefficient vector

}

This function has three arguments. The first argument takes a data frame. The second argument is
a vector of row indices that make up the bootstrap sample, and will be supplied for each bootstrap
replication by boot(). The third argument, maxiter, sets the maximum number of iterations to
perform in each M -estimation; we include this provision because we found that the default of 20

10

−4 −3 −2 −1 0 1

−
0.

6
−

0.
2

0.
2

(a) income coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* *
* * * *************** ******************** * *

** *

* *
* * * *************** ******************** *

*
** *

* *
* * * *************** ******************** *

*
** *

* * * * * *************** ******************** * * ** *
* * * * * *************** ******************** *

*
** ** * * * * *************** ******************** *

*
** ** * * * * *

******* ******

************** *

*

** *

16 22 327 443135 14 41
6 25 363 51138 24 27

33 40 2334 394 43 28 17
30 12 1542 1913 26 20 18

8 379 1 2910 245 21

−1 0 1 2 3 4

−
0.

4
−

0.
2

0.
0

0.
2

(b) education coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

*
* **

*

*********** *********************** * * * * * ** * **
*
*********** *********************** * * * * * ** * **
*
*********** *********************** * * * * * *

* * ** ************ *********************** * * * * * *

* * **
*
*********** *********************** * * * * * *

* * ** ************ *********************** * * * *
* *

* * **
************ *********************** * * * *

*
*

21 32 24 45 1144 3931 7
17 14 41 2535 3371 30

28 9 43 1936 341315 33
18 29 2 204 84042 6

27 26 23 12103822 5 16

Figure 3: Jackknife-after-bootstrap plot for the (a) income and (b) education coefficients in the
Huber regression for Duncan’s occupational-prestige data.

11

iterations in rlm() is not always sufficient. The boot() function is able to pass additional arguments
through to the function specified in its statistic argument. This function recomputes the regression
fit to each bootstrap sample and returns the coefficient estimates.

Here is the call to boot():

set.seed(12345) # for reproducibility

duncan.boot.1 <- boot(data=Duncan, statistic=boot.huber, R=1999, maxit=200)

The first argument to boot is the data set—a vector, matrix, or data frame—to which bootstrap
resampling is to be applied. Each element of the data vector, or each row of the matrix or data
frame, is treated as a case. The statistic argument is a function that returns the possibly vector-
valued statistic to be bootstrapped. The R argument is the number of bootstrap replications. The
maxit argument is passed to the statistic function (here, boot.huber()). Additional arguments
are described in the on-line help for boot().

Because the same random seed was used to create duncan.boot.1 using boot() and duncan.boot

using Boot(), the returned objects are identical, and you can use the hist(), summary(), and
Confint() functions, among others, equivalently with either object.

3.4 Fixed-x or Residual Resampling*

The cases in Duncan’s occupational-prestige study are meant to represent a larger population of all
Census occupations, but they are not literally sampled from that population. It therefore makes
some sense to think of these occupations, and hence the pairs of income and education values used
in the regression, as fixed with respect to replication of the study. The response values, however,
are random, because of the error component of the model. There are other circumstances in which
it is even more compelling to treat the predictors in a study as fixed — for example, in a designed
experiment where the values of the predictors are set by the experimenter.

How can we generate bootstrap replications when the model matrix X is fixed? In residual
resampling, we write

y = Xβ̂ + (y −Xβ̂)

= ŷ + e

where ŷ is the vector of fitted values and e is a vector of residuals. In residual resampling we fix ŷ
and resample the residuals e, to get

y∗ = ŷ + e∗

The "residual" method for Boot implements a slight modification of this procedure, by resampling
scaled and centered residuals, with i-th element

ri =
ei√

1− hi
− r̄

where hi is the ith hat-value or leverage. This is the suggested method in Davison and Hinkley
(1997, Alg. 6.3, p. 271).

set.seed(54321) # for reproducibility

summary(duncan.fix.boot <- Boot(mod.duncan.hub, R=1999, method="residual"))

Number of bootstrap replications R = 1999

original bootBias bootSE bootMed

(Intercept) -7.111 -0.047192 3.9041 -7.090

income 0.701 -0.000903 0.1154 0.702

education 0.485 0.001835 0.0937 0.487

12

Examining the jackknife-after-bootstrap plot for the fixed-x resampling results (Figure 4) pro-
vides some insight into the properties of the method:

par(mfcol=c(2, 1))

jack.after.boot(duncan.fix.boot, index=2, main="(a) income coefficient")

jack.after.boot(duncan.fix.boot, index=3, main="(b) education coefficient")

The quantile traces in Figure 4 are much less variable than in Figure 3 for random-x resampling,
because in fixed-x resampling residuals are decoupled from the original cases. In effect, fixed-x
resampling enforces the assumption that the errors are identically distributed by resampling residuals
from a common distribution. Consequently, if the model is incorrectly specified — for example, if
there is unmodeled nonlinearity, non-constant error variance, or outliers — these characteristics
will not carry over into the resampled data sets. For this reason, it may be preferable to perform
random-x resampling even when it makes sense to think of the model matrix as fixed.

Boot() does not allow method="residual" for generalized linear models; see Davison and Hink-
ley (1997) for a discussion of the methodology, and its problems.

4 Bootstrap Hypothesis Tests*

Tests for individual coefficients equal to zero can be found by inverting a confidence interval: if the
hypothesized value does not fall in a 95% confidence interval, for example, then the p-value of the
test is less than (100− 95)/100 = 0.05.

We will consider one specific testing problem. Imagine that in Duncan’s regression, we want to
use the robust-regression estimator to test the hypothesis that the income and education coefficients
are the same, H0: β1 = β2. This hypothesis arguably makes some sense, because both predictors
are scaled as percentages. We could test the hypothesis with the Wald statistic

z =
b1 − b2(0, 1,−1)V̂ar(b)

 0
1
−1

1/2

where b is the vector of estimated regression coefficients; b1 and b2 are respectively the income and
education coefficients; and V̂ar(b) is the estimated asymptotic covariance matrix of the coefficients.
If we can trust the asymptotic normality of b and its asymptotic covariance matrix, then z is
distributed as a standard normal variable under the null hypothesis. The numerator and denominator
of z are easily computed with the car function deltaMethod():7

(d <- deltaMethod(mod.duncan.hub, "income - education"))

Estimate SE 2.5 % 97.5 %

income - education 0.21601 0.18399 -0.14461 0.57663

The output from deltaMethod is a data frame with one row and two columns, so z is then

(z.diff <- d[1, 1] / d[1, 2])

[1] 1.174

The deltaMethod() function can be used for any linear or nonlinear combination of the coeffi-
cients. The corresponding p-value for the test, assuming asymptotic normality for z, is

7The linearHypothesis() function in the car package fails for this model because objects produced by rlm() inherit
from class "lm" and the "lm" method for linearHypothesis() does not work with "rlm" objects; one could, however,
apply the default method car:::linearHypothesis.default() to produce the same results as deltaMethod().

13

−2 −1 0 1 2 3

−
0.

3
−

0.
1

0.
1

(a) income coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* * *** **** *** ******
*** ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * *
* * *** **** *** ********* ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * ** * *** **** *** ********* ******** * *** *** ** *** * * * *
* * *** **** *** ********* ******** * *** *** ** *** * * * *

2 27 23 38 33 11 40 18 25
7 9 31 45 8 36 3 34 42

30 20 1915 2829 10 41 1
13 37 1716 1424 4 39 32

5 35 4426 43 12 6 22 21

−2 −1 0 1 2

−
0.

3
−

0.
1

0.
1

0.
2

(b) education coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

21 8 25 34 17 18 40 45 27
41 26 11 13 6 36 30 19 35

3 1 12 37 16 43 24 7 2
22 32 5 14 38 31 29 23 9

42 4 20 44 39 10 33 15 28

Figure 4: Jackknife-after-bootstrap plot for the (a) income and (b) education coefficients in the
Huber regression for Duncan’s occupational-prestige data, using fixed-x resampling.

14

z−diff

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normal Density
Kernel Density
Obs. Value

Figure 5: Distribution of the bootstrapped test statistic z∗ for the hypothesis that the coefficients
of income and education in Duncan’s robust regression are equal.

c(two.tail.p=2*pnorm(z.diff, lower.tail=FALSE))

two.tail.p

0.24039

In a small sample such as this, however, we may be more comfortable relying on the bootstrap
directly to compute a p-value. To use Boot() for this purpose, we write a function f.diff():

f.diff <- function(mod){

d <- deltaMethod(mod, "income-education")

d[1, 1]/d[1, 2]

}

Then the call to Boot() is

set.seed(2468) # for reproducibility

boot.diff <- Boot(mod.duncan.hub, R=999, f=f.diff, labels="z-diff",

method="residual")

hist(boot.diff, ci="none")

The histogram of the bootstrapped test statistics is shown in Figure 5. More of the bootstrap density
is to the right of the observed value of z than is modeled by fitting a normal distribution,

The two-tailed p-value based on the bootstrap is estimated by the fraction of bootstrap values
|z∗| > |z|, which we compute as

R <- 1999

c(bootp = (1 + sum(abs(boot.diff$t[, 1]) > abs(boot.diff$t0[1])))/(R + 1))

bootp

0.2855

15

In this expression, boot.diff$t[, 1] is the vector of bootstrapped values z∗ and boot.diff$t0[1]

is the observed value z. We added 1 to the numerator and denominator to improve accuracy.
Testing in general using the bootstrap is potentially complex and beyond the purpose of this

appendix. We recommend Davison and Hinkley (1997, Sec. 6.3.2) for a discussion of testing in the
regression context.

5 Using Boot() With Other Regression Modeling Functions

The Boot() function was originally written specifically for regression models similar to a "glm"

object, like the objects produced by the rlm() function used earlier in this appendix as an example.
Thanks to a contribution from Achim Zeileis, the classes of regression models that can be used
with Boot() have been greatly expanded. We will illustrate with the betareg package for fitting
regressions with a Beta-distributed response,8

library("betareg")

data("ReadingSkills", package="betareg")

m <- betareg(accuracy ~ iq*dyslexia | iq + dyslexia, data=ReadingSkills)

summary(m)

Call:

betareg(formula = accuracy ~ iq * dyslexia | iq + dyslexia, data = ReadingSkills)

Standardized weighted residuals 2:

Min 1Q Median 3Q Max

-2.390 -0.642 0.157 0.852 1.645

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.123 0.143 7.86 3.7e-15

iq 0.486 0.133 3.65 0.00026

dyslexia -0.742 0.143 -5.20 2.0e-07

iq:dyslexia -0.581 0.133 -4.38 1.2e-05

Phi coefficients (precision model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.304 0.223 14.84 < 2e-16

iq 1.229 0.267 4.60 4.2e-06

dyslexia 1.747 0.262 6.66 2.8e-11

Type of estimator: ML (maximum likelihood)

Log-likelihood: 65.9 on 7 Df

Pseudo R-squared: 0.576

Number of iterations: 25 (BFGS) + 1 (Fisher scoring)

The betareg() function fits two linear predictors, the first for a mean model, and the second for
a precision model. The response, accuracy, is a rate between zero and 1. The predictors are an
indicator for dyslexia and the numeric predictor iq of non-verbal IQ. The Beta distribution has
two parameters that can be viewed as a mean parameter and a precision parameter, hence the need
for two linear predictors. The bootstrap can be used to assess the precision of the estimates.

8You may need to install the betareg package to reproduce this example.

16

To apply the Boot() function, the following functions must exist and return suitable values for
the regression object:

1. The object must have an update() method, as do most objects produced by R modeling
functions.

2. The function that created the object must have a subset argument, as do most functions that
have a data argument.

3. For the model object m, the call residuals(m, type="pearson") must return a vector of
residuals. If this is not the case, and you have another function (say, myres()) that computes
Pearson residuals, you can create the requisite method. First, find the class of the object,

class(m)

[1] "betareg"

Then write the method, for example,

residuals.betareg <- function(object, type="pearson") {myres(object)}

This is unnecessary for "betareg" objects because the necessary residuals() method already
exists.

4. For the model object m, the call fitted(m) must return a vector of fitted values. The required
fitted() method also already exists for "betareg" objects; if it didn’t you would have to
write a fitted.betareg() method.

5. The function call hatvalues(m) must return a vector of leverages, which are used to improve
the performance of the bootstrap, but which may also simply be set to 1. If your regression
object, say of class "myreg", does not have a corresponding hatvalues() method, we suggest
defining the “dummy” method

hatvalues.myreg <- function(model, ...) 1

Because "betareg" objects have all the requisite methods, use of Boot() is straightforward:

b <- Boot(m, R=250)

sqrt(diag(vcov(b)))

(Intercept) iq dyslexia iq:dyslexia

0.19182 0.17796 0.19277 0.18998

(phi)_(Intercept) (phi)_iq (phi)_dyslexia

0.31034 0.63747 0.38768

The output simply shows the bootstrapped standard errors of the Beta regression coefficients.

6 Concluding Remarks

Extending random-x resampling to other sorts of parametric regression models, such as generalized
linear models, is straightforward. In many instances, however, fixed-x resampling requires special
treatment, as does resampling for nonparametric regression.

The discussion in the preceding sections assumes independent random sampling or simple random
sampling from a population much larger than the sample, but bootstrap methods can easily be
adapted to other sampling schemes. For example, in stratified sampling, bootstrap resampling is

17

simply performed within strata, building up a bootstrap sample much as the original sample was
composed from subsamples for the strata. Likewise, in a cluster sample, we resample clusters rather
than individual cases. If the elements of the sample were selected with unequal probability, then so
must the elements of each bootstrap sample.

The essential point is to preserve the analogy between the selection of the original sample from
the population and the selection of each bootstrap sample from the original sample. Indeed, one
of the attractions of the bootstrap is that it can provide correct statistical inference for complex
sampling designs, which often are handled by ad-hoc methods.9 The software in the boot package
can accommodate these complications; see, in particular, the stype and strata arguments to the
boot() function.

7 Complementary Reading and References

Efron and Tibshirani (1993) and Davison and Hinkley (1997) provide readable book-length treat-
ments of the bootstrap. For shorter presentations, see Fox (2016, Chap. 21), Weisberg (2014,
Sec. 7.7), and Stine (1990).

References

Canty, A. and Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-20.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge
University Press, Cambridge.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7:1–26.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New
York.

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models. Sage, Thousand Oaks
CA, third edition.

Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression. Sage, Thousand Oaks,
CA, third edition.

Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons, Hoboken,
NJ.

Stine, R. (1990). An introduction to bootstrap methods: examples and ideas. In Fox, J. and Long,
J. S., editors, Modern Methods of Data Analysis, pages 325–373. Sage, Newbury Park, CA.

Tibshirani, R. and Leisch, F. (2017). bootstrap: Functions for the Book “An Introduction to the
Bootstrap”. R package version 2017.2.

Weisberg, S. (2014). Applied Linear Regression. Wiley, Hoboken NJ, fourth edition.

9The survey package for R (Lumley, 2010) has extensive facilities for correct statistical inference in complex
sample surveys. This package is described in the on-line appendix to the R Companion on fitting regression models
to survey data.

18

