
Bayesian Estimation of Regression Models

An Appendix to Fox & Weisberg An R Companion to Applied Regression, third edition

John Fox

last revision: 2018-10-01

Abstract

In this appendix to Fox and Weisberg (2019), we review the basics of Bayesian estimation
and show how to use the Stan program, via the rstan package, for Bayesian estimation of
regression models in R.

There are many R packages, some of them self-contained, for Bayesian estimation of statistical
models. Other packages interface R with independent software for Bayesian estimation. In this ap-
pendix, we illustrate the use of the rstan package (Stan Development Team, 2018), which provides
an R interface to the Stan program (Carpenter et al., 2017). Stan represents the state of the art in
Bayesian statistical software, permitting the flexible definition of probability models for data, auto-
matically compiling the models into C++ code and then into independently executable programs,
and estimating the models by Hamiltonian Monte Carlo.

Stan is included with the rstan package, but for it to work it’s necessary to have a C++ compiler
installed on your computer; we explain how to do this on Windows and macOS systems in the
Appendix to this appendix.

Bayesian inference for regression models and its implementation in R is a very large topic worthy
of book-length treatment, for which we refer you to the sources in the complementary readings at
the end of this appendix. The appendix simply sketches the topic.

1 Basic Ideas

To review the basics of Bayesian estimation, we adapt an example from Fox (2009, Sec. 3.7), which
is coincidentally similar to an example in Carpenter et al. (2017, Sec. 2.1): Imagine that we wish to
estimate the probability 0 ≤ φ ≤ 1 that a coin comes up heads, thinking of this unknown parameter
as a property of the coin. We’re impatient, so we collect data by flipping the coin just 10 times,
producing the sequence {H,H, T,H, T, T, T, T,H, T} of heads and tails. The probability of observing
this sample of data given the parameter φ is

Pr(data|parameter) = Pr(HHTHTTTTHT |φ)

= φφ(1− φ)φ(1− φ)(1− φ)(1− φ)(1− φ)φ(1− φ)

= φ4(1− φ)6

which is the probability of 10 independent Bernoulli trials Yi, i = 1, . . . , 10, where Yi = 1 when the
ith flip produces a head, zero when it produces a tail, and for which Pr(Yi = 1) = φ.

The likelihood function turns this equation around by treating the observed data as conditionally
fixed and the unknown parameter φ as variable over its potential range:

L(parameter|data) = Pr(φ|HHTHTTTTHT)

= φ4(1− φ)6

1

The probability φ is continuously variable between zero and 1; here are some representative values
of the likelihood over that range:1

φ L(φ)
0.0 0
0.1 0.00005314
0.2 0.00041943
0.3 0.00095296
0.4 0.00119439
0.5 0.00097656
0.6 0.00053084
0.7 0.00017503
0.8 0.00002621
0.9 0.00000066
1.0 0

As is sensible, L(0) = 0, because if φ were zero, then we could observe no heads, and we observed 4
heads; similarly, L(1) = 0, because if φ = 1, then we could observe no tails. Figure 1, drawn by the
following R commands, shows the full likelihood function:2

phi <- seq(0, 1, length=500)

L <- phi^4 * (1 - phi)^6

plot(phi, L, type="l", lwd=2, xlab=expression(phi), ylab=expression(L(phi)))

abline(h=0, col="darkgray")

abline(v=0.4, h=max(L), lty=2)

text(0.4, -0.00025, expression(hat(phi)), xpd=TRUE)

The maximum of the likelihood function is achieved at φ̂ = 0.4, the maximum-likelihood estimate of
φ, which is just the observed proportion 4/10 of heads.

In contrast to maximum-likelihood estimation, which is based solely on the observed data,
Bayesian inference3 requires that we express our prior beliefs about φ as a probability density
function over its possible values, and combines this prior distribution with the likelihood function.

1Rather than focusing on the observed sequence of heads and tails, we could instead count the observed number
of heads in the 10 independent flips of the coin. That number, say Y = 4, has the following probability from the
binomial distribution:

Pr(Y = 4) =
10!

4!(10− 4)!
φ4(1− φ)10−4

Because 10!
4!(10−4)!

is a constant, reflecting the fact that the number of heads is a sufficient statistic for φ (i.e., it

exhausts all information about φ in the data), using the binomial likelihood produces the same analysis as using the
Bernoulli likelihood.

2See Chapter 9 of the R Companion for a discussion of customized graphics in R.
3Bayesian inference is named after the Reverand Thomas Bayes, an 18th century British mathematician, who

formulated Bayes’ Theorem,

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

where the events A and B are given the following interpretation:

� A is an uncertain proposition whose truth we want to establish, say that the probability of heads for a coin is
0.5.

� B represents data that are relevant to this proposition, such as our observation of a sequence of 4 heads and 6
tails in 10 flips of the coin.

� Pr(A) is the prior probability of A, formulated before we start collecting data and representing the strength of
our belief in the truth of A.

� Pr(B|A) is the conditional probability of observing the obtained data assuming A—for example, the probability
of the obtained sequence of heads and tails given that the probability of observing a head is 0.5.

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
04

0.
00

08
0.

00
12

φ

L(
φ)

φ̂

Figure 1: Likelihood function L(φ) for the coin-flipping experiment, having observed the sequence

{H,H, T,H, T, T, T, T,H, T} of 4 heads and 6 tails. The maximum-likelihood estimate φ̂ = 0.4 is
marked on the graph.

For example, if we believe that all values of φ are equally likely then that implies the flat prior

p(φ) = 1; this is a proper prior density because it encloses an area of 1:4
∫ 1

0
p(φ)dφ = 1.5 The

Bayesian posterior density of φ is the product of the prior density and the likelihood, normalized to
integrate to 1:

p(φ|data) =
p(φ)L(φ|data)∫ 1

0
p(φ′)L(φ′|data)dφ′

For the flat prior p(φ) = 1, the posterior density is simply proportional to the likelihood. If we
take as a Bayesian point-estimate of φ the mode of the posterior distribution, then the Bayesian
and maximum-likelihood estimates coincide. Alternatively, we could use the mean or median of the
posterior. As well, we can form a Bayesian analog of a confidence interval, called a credible interval,
based on quantiles of the posterior distribution; for example, the probability is 0.95 that φ is between
the 0.025 and 0.975 quantiles. A credible interval therefore has a more straightforward interpretation
than a “frequentist” confidence interval: Bayesians regard unknown parameters as random variables,

� Pr(B) is the unconditional probability of B, equal to

Pr(B) = Pr(B|A) Pr(A) + Pr(B|¬A)[1− Pr(A)]

where ¬A (“not A”) is the event that the proposition A is false.

� Then Pr(A|B) is our posterior probability of belief in A, updated from the prior probability on the basis of the
data we collected.

The analysis that follows in the text uses a version of Bayes’ Theorem that applies to continuous random variables
rather than to simple events.

4A disquieting realization is that a flat prior on φ is not in general a flat prior on a transformation of φ, such as
the logit transformation θ = log[φ/(1− φ)], and vice-versa. Indeed, a flat prior on θ is improper (encloses an infinite
area, not 1), because θ is unbounded below and above, and places high probability on values of φ that are near zero
and 1. It is possible to formulate a prior, called the Jeffreys prior, that is invariant with respect to transformation of
a parameter, but that too has its limitations (see, e.g., Gelman et al., 2013, Sec. 2.8).

5If you’re unfamiliar with calculus, this equation simply states that the area under the horizontal straight line
p(φ) = 1 between φ = 0 and φ = 1—that is the unit square—encloses an area of 1.

3

subject to variation due to uncertainty about their values, not as fixed values.
Suppose, now, that we have stronger prior beliefs about the value of φ. For example, we look

at the coin and note that it has both a head and a tail, and that it doesn’t appear to be strangely
weighted. We figure that φ must be pretty close to 0.5, almost surely between 0.2 and 0.8. The
family of Beta distributions provides a flexible set of prior densities for a probability like φ. The
Beta distributions depend on two shape parameters, α and β, and have the density

p(φ) =
φα−1(1− φ)β−1

B(α, β)
for 0 ≤ φ ≤ 1

where B(α, β) is a normalizing constant that makes p(φ) integrate to 1.6 Some examples of Beta
distributions are shown in Figure 2, with symmetric densities on the left and asymmetric densities,
produced by α 6= β, on the right:

.par <- par(mfrow=c(1, 2))

plot(0:1, c(0, 5), type="n", xlab=expression(phi),

ylab=expression(p(phi)), main="(a)")

lines(phi, dbeta(phi, 1, 1), lwd=2)

lines(phi, dbeta(phi, 4, 4), lwd=2, lty=2)

lines(phi, dbeta(phi, 8, 8), lwd=2, lty=3)

legend("top", inset=0.02, legend=c(expression(alpha == 1 ~~ beta == 1),

expression(alpha == 4 ~~ beta == 4),

expression(alpha == 8 ~~ beta == 8)),

lty=1:3, lwd=2, title="Symmetric Beta Priors", bty="n")

plot(0:1, c(0, 5), type="n", xlab=expression(phi),

ylab=expression(p(phi)), main="(b)")

lines(phi, dbeta(phi, 1, 4), lwd=2)

lines(phi, dbeta(phi, 4, 1), lwd=2, lty=2)

lines(phi, dbeta(phi, 4, 8), lwd=2, lty=3)

lines(phi, dbeta(phi, 8, 4), lwd=2, lty=4)

legend("top", inset=0.02, legend=c(expression(alpha == 1 ~~ beta == 4),

expression(alpha == 4 ~~ beta == 1),

expression(alpha == 4 ~~ beta == 8),

expression(alpha == 8 ~~ beta == 4)),

lty=1:4, lwd=2, title="Asymmetric Beta Priors", bty="n")

par(.par)

For our example, therefore, Beta(8, 8) roughly reflects our prior beliefs about φ; in contrast,
Beta(1, 1) corresponds to the flat (or noninformative) prior p(φ) = 1.

Figure 3 shows the alternative posterior densities that we obtain for the flat Beta(1, 1) and
informative Beta(8, 8) priors. In each case, the posterior is also a Beta distribution, Beta(5, 7) for
the flat prior and Beta(12, 14) for the informative prior. That the prior and posterior distributions
are in the same (Beta) family reflects the fact that the Beta distribution is a conjugate prior for the
Bernoulli likeihood.

6* The formula for B(α, β) isn’t terribly important to us, other than to know that it exists. For the record,

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

where Γ(ν) =
∫∞
0 e−νzν−1dz is the gamma function.

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

(a)

φ

p(
φ)

Symmetric Beta Priors

α = 1 β = 1
α = 4 β = 4
α = 8 β = 8

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

(b)

φ
p(

φ)

Asymmetric Beta Priors

α = 1 β = 4
α = 4 β = 1
α = 4 β = 8
α = 8 β = 4

Figure 2: Beta priors for various choices of the shape parameters α and β: (a) symmetric, α = β;
(b) asymmetric, α 6= β.

plot(phi, dbeta(phi, 12, 13), type="l", lwd=2, xlab=expression(phi),

ylab=expression(p(phi)))

lines(phi, dbeta(phi, 5, 7), lty=2, lwd=2)

legend("topright", legend=c("for Beta(8, 8) prior", "for Beta(1, 1) prior"),

lty=1:2, lwd=2, title="Posterior Distributions", bty="n", inset=0.02)

Using the Beta(8, 8) prior is like adding 7 heads and 7 tails to the data, thus drawing the mode of
the posterior distribution much closer to φ = 0.5 and also decreasing the variability of the posterior.
Thinking about the Beta prior in this way makes it clear that as the sample size n grows, the impact
of the prior on the posterior decreases; eventually, for a large-enough sample, the data (through the
likelihood) entirely dominate the prior.

The generalization of this example is immediate: If we flip the coin n times observing h heads
and n−h tails in a particular sequence, then the Bernoulli likelihood is L(φ) = φh(1−φ)n−h. Using
the conjugate prior Beta(α, β), the posterior density is Beta(h+ α, n− h+ β), which is like adding
α− 1 heads and β − 1 tails to the data.

For our coin-flipping example, we formulated a probability model with a single parameter, φ,
the probability of a head on an individual flip of the coin. Almost all interesting probability models
for data, such as regression models, have multiple parameters. The Bayesian inference framework
extends straightforwardly to such multiple-parameter models: Collect the parameters of the model in
the vector φ = (φ1, φ2, . . . , φp) and the observed data in D, often a data matrix.7 Then the likelihood
function is L(φ|D), the multivariate prior density is p(φ), and the multivariate posterior density for
the parameters is, as in the single-parameter case, the normalized product of the likelihood and the
prior density:

p(φ|D) =
p(φ)L(φ|D)∫

φ′ p(φ′)L(φ′|D)dφ′

7If you’re unfamiliar with vector and matrix notation, just think of φ as the list of parameters and D as a data
table with rows representing cases and columns representing variables.

5

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

φ

p(
φ)

Posterior Distributions

for Beta(8, 8) prior
for Beta(1, 1) prior

Figure 3: Posterior distributions for the coin-flipping experiment with 4 heads and 6 tails, corre-
sponding to the noninformative Beta(1, 1) and informative Beta(8, 8) priors.

Inference then typically focuses on the marginal posterior density of each of the individual parameters
φj in φ, for which, for example, we can formulate a point estimate, such as the posterior mean, and
a credible interval.

2 Fitting Bayesian Models with Stan and rstan

Until fairly recently, practical Bayesian analysis was limited to applications with conjugate pri-
ors, for which evaluating the integral in the denominator of the posterior distribution is tractable.
Markov-Chain Monte Carlo methods (abbreviated MCMC), a suite of random-sampling simulation
methods, allow us to draw samples from the posterior distribution even when its analytic evalua-
tion is impractical. MCMC methods were originally formulated in the 1950s to deal with similarly
difficult probability calculations in statistical physics. Their application to statistics more generally,
together with convenient software, has greatly expanded the application of Bayesian methods to
data analysis.

In this section, we introduce the Stan software for Bayesian estimation, together with the rstan
package, which provides a convenient interface to Stan from R. Stan implements a species of MCMC
methods called Hamiltonian Monte Carlo, which provides advantages of robustness and efficiency
relative to older MCMC methods such as the Metropolis-Hastings algorithm and the Gibbs sampler.8

Stan is a programming language for specifying and estimating probability models, a language
with its own syntax and semantics, distinct from the syntax and semantics of R. Stan syntax is
similar in certain respects to R and in other respects to C++. Indeed, a Stan program representing a
probability model is translated into a corresponding C++ program, which is subsequently compiled
into a directly executable program in machine code. The resulting executable program is typically

8See the complementary readings at the end of this appendix for sources that explain how MCMC sampling
methods work.

6

much more efficient than an equivalent program written in interpreted R code. That’s a good thing
because MCMC methods are highly computationally intensive.

2.1 A Simple Example: The Coin-Flipping Experiment

We begin with a simple example, the Bernoulli-Beta model for the coin-flipping experiment that
we introduced in the preceding section. Because the example uses a conjugate prior, we can easily
derive the posterior distribution (as indeed we did) and we consequently don’t have to use MCMC
sampling methods. Let’s see, however, whether we can get the right answer from Stan.

We begin by loading the rstan package. As the startup message for rstan indicates, the package
is capable of taking advantage of parallel processing on a computer with multiple cores and can save
compiled Stan programs to avoid the overhead of recompiling them. We take both these hints:

library(rstan)

Loading required package: ggplot2

Loading required package: StanHeaders

rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)

For execution on a local, multicore CPU with excess RAM we recommend calling

options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling

rstan_options(auto_write = TRUE)

(ncores <- parallel::detectCores())

[1] 4

options(mc.cores=ncores)

rstan_options(auto_write=TRUE)

We can define a Stan model either by typing the model into an R character string or by placing the
code for the model into a file of file type .stan. The latter is a generally the more convenient choice
for serious work, and the RStudio source-code editor recognizes and provides syntax highlighting for
.stan files. For our simple preliminary example and more generally in this appendix, however, we
write the model into a character string:

bern.model <- "

data {

int<lower=0> n; // number of observations

int<lower=0, upper=1> y[n]; // observations, 0=failure; 1=success

int<lower=1> a; // shape parameter 1 for Beta prior

int<lower=1> b; // shape parameter 2 for Beta prior

}

parameters {

real<lower=0, upper=1> phi; // per observation probability of success

}

model {

phi ~ beta(a, b); // Beta(a, b) prior for phi

y ~ bernoulli(phi); // likelihood

}

"

7

This example illustrates several characteristics of Stan programs:

� The program consists of several named blocks of code, here data, parameters, and model.
Statements in each code block are enclosed in braces, { }, and each statement ends with a
semicolon, ;.

� End-of-line comments are preceded by two slashes, //; everything to the right of the double-
slashes is ignored by the Stan compiler.

� Unlike in R, variables in Stan must be declared before they are used. The declaration defines the
kind of data that the variable contains, for example, integers (int) or floating-point numbers
(real), and, if applicable, the dimensions of the variable are given in square brackets [].

� The rules for naming variables in Stan are somewhat different from the rules in R. In particular,
periods (.) aren’t allowed in variable names and underscores (_) are conventionally used
instead as a separator.

� If the variable is bounded, then the lower bound, upper bound, or both are specified in angle
brackets < >.

� Stan includes a wide variety of probability functions. Probability distributions are specified
using tilde (~) notation, variable ~ distribution (parameter1, parameter2, ...)

The model bern.model therefore has the following interpretation:

� The data input to be supplied to the model includes the non-negative integer number of
observations n; a vector y of n integers, each either 0 or 1, representing respectively “failure”
and “success” (tails and heads for the coin-flipping experiment); and the two shape parameters
a and b for the Beta prior, each an integer greater than or equal to 1.

� There is one parameter in the model, the probability phi of success (i.e., obtaining a head) on
a single Bernoulli trial, which is a real number between zero and 1.

� The parameter phi follows a Beta prior with shape parameters a and b.

� The likelihood function for the observed data y is from the Bernouli distribution with proba-
bility of success phi.

Probability functions in Stan are vectorized (as they are in R), and so it’s not necessary to define
the likelihood for each component of y. It’s not wrong, however, to do so, and we could replace the
statement

y ~ bernoulli(phi);

in our program with a for loop, the syntax for which is very similar to R:

for (i in 1:n){

y[i] ~ bernoulli(phi); // likelihood

}

Vectorized code in Stan generally runs more efficiently, and so we prefer the first formulation.
We proceed to collect the input for the model in an R list:

coin.exper <- list(n=10, y=c(1, 1, 0, 1, 0, 0, 0, 0, 1, 0), a=1, b=1) # flat prior

and generate a seed to use for Stan’s random-number generator to make our results reproducible (as
we did in the R Companion when we used simulation methods like the bootstrap):

8

sample(1e6, 1)

277360

Next, we call the stan() function in the rstan package to compile and fit the model, using the
system.time() function to time the computation:9

system.time(

bern.1 <- stan(

model_code=bern.model,

model_name="Bernoulli model, flat prior",

seed=277360,

data=coin.exper,

iter=10000,

chains=4

)

)

user system elapsed

0.97 0.37 45.86

The computation takes less than minute on our computer.10

The stan() function has a number of arguments (see help("stan")), several of which we use
here:

model_code is a character variable containing the definition of the model; if the model were in a
.stan file, we’d use the file argument instead.

model_name is an optional character string to label output.

seed is an optional seed for Stan’s random-number generator.

data is an R list containing elements corresponding to the variables defined in the Stan program
data block.

iter is the number of iterations to perform in each chain (see immediately below). Hamiltonian
Monte-Carlo is an iterative method (as are MCMC methods generally) that samples repeated
random draws from the posterior distribution. We specify 10,000 draws; the default is 2,000.
Also by default, the first half of the sampled values are treated as a “warm-up” and are dis-
carded. MCMC draws are generally not independent observations from the posterior distri-
bution, and so the effective sample size after the warm-up period is less than the equivalent
of iter/2 independent obervations. An advantage of Hamiltonian Monte Carlo over other
MCMC methods is that it tends to produce samples with less-correlated observations.

chains is the number of MCMC chains to be run. The 4 chains produce samples that are inde-
pendent of one-another. By comparing the chains, it’s possible to learn whether or not the
MCMC process probably converged to the target distribution (see below). The default number
of chains is 4, and so we could have omitted this argument. It’s possible to run the chains in
parallel on a computer with multiple cores.

9The rstan() function normally reports its progress on the R console; we suppress the console output here.
10Most of this time is devoted to compiling the Stan program. Once compiled, the program takes about 5 seconds

to run.

9

Printing the object returned by stan() summarizes the results; we call print() explicitly to get
more than two places to the right of the decimal point:11

print(bern.1, digits=4)

Inference for Stan model: Bernoulli model, flat prior.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

phi 0.4164 0.0016 0.1381 0.1634 0.3152 0.4121 0.5132 0.6971 7015 1.0007

lp__ -8.6836 0.0082 0.7491 -10.8838 -8.8409 -8.3979 -8.2078 -8.1509 8430 1.0003

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:14:08 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

� The results are reported for two quantities, phi and lp__. The former is the parameter of
interest; the latter is the MCMC approximation to the log-posterior density, up to an additive
constant, and isn’t generally of direct interest.

� The column labelled mean contains the estimated mean of the posterior distribution of phi

and the mean (adjusted) log-posterior density. The mean of the posterior distribution provides
an estimate of φ, φ̄ = 0.4164. As we know, the true posterior distribution is Beta(5, 7). The
mean of a Beta distribution is α/(α+ β), which in this case is 5/(5 + 7) = 0.4167.

� The column labelled se_mean is the simulation standard error of the quantity in the mean

column; the simulation variability will decrease if we increase the number of iterations. In
contrast, the column labelled sd is the estimation standard error of the mean. In this case, the
simulation standard error for the posterior mean of φ is 0.0016, and thus it’s not surprising that
the MCMC mean and the mean of the true Beta(5, 7) posterior differ slightly. The estimation
standard error of φ̄ is quite wide, 0.1381, as one would expect in a sample of only n = 10 cases
coupled with a flat prior.

� The subsequent several columns give various percentiles of the posterior distribution; thus a
95% credible interval for φ is (0.1634, 0.6971).

� The column marked n_eff is the effective sample size, smaller than the 4 × 5000 = 20, 000
values sampled after warm-up.

� The column labelled Rhat is a convergence diagnostic; if the marginal posterior distribution
for a parameter has converged, then Rhat should be no greater than about 1.1.

Let’s compare Stan’s approximation to the posterior distribution of φ to the theoretically correct
Beta(5, 7) posterior; to do so we call the densityPlot() function in the car package, producing
Figure 4:

library("car")

Loading required package: carData

11The annotation thin=1 in the output indicates that all sampled values after the burn-in period are retained;
specifying the argument thin=2 to stan(), for example, would discard every other sampled value, producing less-
correlated observations from the posterior distribution at the cost of sampling fewer retained values. NUTS(diag_e),
also shown in the stan() output, indicates the kind of Hamiltonian Monte Carlo sampler that was employed.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

φ

D
en

si
ty

Figure 4: Comparison of the approximate posterior density produced by Stan (the solid black line)
to the exact Beta(5, 7) posterior density (the broken magenta line), for the coin-flipping experiment
with a flat prior.

densityPlot(extract(bern.1, "phi")$phi, from=0, to=1, normalize=TRUE,

xlab=expression(phi))

lines(phi, dbeta(phi, 5, 7), col="magenta", lwd=2, lty=2)

abline(v=0.4, lty=2)

We use the extract() function from the rstan package to retrieve the 20,000 sampled values of φ;
the function returns a list with one element, $phi. The simulated posterior density produced by
Stan is very similar to the true Beta(5, 7) posterior density, albeit with a few small bumps.

Finally, it is prudent to plot the “traces” of the sampled values of φ over the 10,000 iterations for
each of the 4 chains. If the chains have converged, then the traces should level out after the burn-in
period and the chains should “mix”—that is, largely overlap one-another; we use the traceplot()

function in rstan to draw the graph (in Figure 5):

traceplot(bern.1)

The results are unproblematic.
We invite the reader to redo this example with the informative Beta(8, 8) prior, simply changing

the values of a and b in the data list passed to stan().

2.2 The Normal Linear Regression Model

We’re familiar from Chapter 4 of the R Companion with the normal linear regression model, which
may be written

yi|x1i, . . . , βkxki ∼ N(β0 + β1x1i + · · ·+ βkxki, σ
2)

where yi is the response for the ith of n cases; the xjis are regressors for the ith case; the βjs
(regression coefficients) and σ2 (conditional variance of the response) are parameters to be estimated
from the data; and yi, yi′ are independentfor i 6= i′. We’re accustomed to estimating this model by
least-squares regression. In this section, we show you how to use Stan to get Bayesian estimates for

11

0.25

0.50

0.75

5000 6000 7000 8000 9000 10000

ph
i

chain

1

2

3

4

Figure 5: Post burn-in trace plot for the 4 chains used in the coin-flipping example with flat prior.

the parameters of the normal linear model, using Duncan’s occupational prestige data (introduced
in Section 1.5 of the R Companion) for an illustration. The data are in the Duncan data frame in
the carData package, which has already been loaded in the current R session.

Here’s a Stan model for Duncan’s regression of prestige on income and education:

duncan.model.1 <- "

data {

int<lower=0> n; // number of cases

int<lower=0> k; // number of regressors (less intercept)

vector[n] prestige; // response

vector[n] income; // predictor

vector[n] education; // predictor

}

parameters {

vector[k + 1] beta; // regression coefficients

real<lower=0> sigma; // error standard deviation

}

transformed parameters {

vector[n] mu = beta[1] + beta[2]*income + beta[3]*education;

// conditional expectation of the response

}

model {

prestige ~ normal(mu, sigma); // likelihood

}

"

This model incorporates a few notable features:

� We code the number of cases n and number of predictors k as “data” to make it easier to
generalize the model.

� We define the response variable, the predictors, and the regression parameters as Stan vec-

tors. Because Stan vectors are indexed from 1, not zero, the intercept in the model is named

12

beta[1].12

� The error standard deviation sigma is a real number bounded below by zero.

� We introduce a new Stan program block, transformed parameters, to define the vector of
expectations mu of the response in terms of the regression coefficients and predictors. This
isn’t strictly necessary here, but it allows us to show how to define dependencies among the
parameters of a model, and simplifies the expression for the distribution of the response.

� We declare the response prestige to be normally distributed with conditional mean mu and
standard deviation (not variance!) sigma.

� We don’t specify prior distributions for the regression coefficients and error standard devia-
tion, and so Stan will use flat priors for these parameters. Because the regression coefficients
are unbounded and the error standard deviation is unbounded above, flat priors on these pa-
rameters enclose an infinite area rather than an area of 1, and hence are not proper density
functions. In many circumstances, including the current model, improper priors nevertheless
lead to proper posterior distributions, and hence are considered by some to constitute a reason-
able expression of prior ignorance about the values of parameters. We consider proper priors
for the parameters of Duncan’s regression model below.

Using the stan() function to fit the model is straightforward. As usual, we start by assembling
a data list and we select a known seed for Stan’s random-number generator:13

data.duncan <- with(Duncan, list(n=nrow(Duncan), k=2,

prestige=prestige, income=income, education=education))

sample(1e6, 1)

693089

system.time(fit.duncan.1 <- stan(model_code=duncan.model.1,

model_name="Duncan regression, flat priors",

seed=693089, data=data.duncan, iter=10000))

user system elapsed

0.95 0.43 45.52

Let’s compare the estimates of the regression parameters from Stan with those obtained by
least-squares regression (which, with the exception of the error standard deviation, are maximum-
likelihood estimates for the parameters of the normal linear model):14

print(fit.duncan.1, pars=c("beta", "sigma"), digits=4)

Inference for Stan model: Duncan regression, flat priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] -6.0613 0.0393 4.3867 -14.8444 -8.9543 -6.0377 -3.1539 2.4602 12485 1.0001

beta[2] 0.5991 0.0012 0.1234 0.3551 0.5164 0.6000 0.6821 0.8372 10471 1.0003

12Stan vectors are column vectors; it’s also possible to define row vectors and matrices; see the Stan manual.
13As in our previous example, almost all of the time required for this command was used to compile the model.
14The maximum-likelihood estimate of σ2, and hence of σ, is obtained by dividing the residual sum of squares by

n rather than by residual degrees of freedom.

13

beta[3] 0.5457 0.0010 0.1004 0.3502 0.4786 0.5451 0.6132 0.7429 10347 1.0001

sigma 13.7799 0.0142 1.5811 11.1058 12.6747 13.6174 14.7293 17.3244 12398 0.9999

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:14:55 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

brief(lm(prestige ~ income + education, data=Duncan))

(Intercept) income education

Estimate -6.06 0.599 0.5458

Std. Error 4.27 0.120 0.0983

Residual SD = 13.4 on 42 df, R-squared = 0.828

In printing the Bayesian estimates we specify the parameters beta and sigma to avoid displaying
estimates of the n = 45 elements of mu, which are fitted values under the model. It’s apparent that
the flat-prior Bayesian and least-squares estimates and standard errors are very similar. Trace plots
of the sampled parameter values (not shown) reveal no convergence issues.

Although it’s not the case here, flat improper priors can be problematic, for example, producing
convergence problems in Stan. An alternative is to use diffuse, but proper, weakly informative priors.
Doing so, however, requires some thought about the scale and meaning of the parameters. For our
current example, we start by rescaling the predictors income and education to zero means, so that
the intercept of the regression model estimates the population mean of the response, prestige.

All of the variables in Duncan’s regression are percentages, and so it doesn’t make sense to have
an intercept in the rescaled model less than zero or greater than 100. Although we could constrain
the intecept to this range, we can instead simply pick a prior distribution for the intercept that
has very little probability below zero or above 100. We use normal priors for this example because
of their familiarity, but there are many other reasonable choices for weakly informative priors. We
know that 68% of values are within 1 standard deviation of the mean of a normally distributed
variable, 95% within 2 standard deviations, and 99.7% within 3 standard deviations. The weakly
informative prior N(50, 202) for β0 is centered at the middle of the prestige scale and virtually
rules out values below zero or above 100.

Similarly, it seems very improbable that a 1% increase in income or education would produce
as much as a 2 or 3% change in prestige. Specifying the weakly informative prior N(0, 32) for the
income and education slopes makes wildly large positive or negative coefficients very improbable
but allows a wide range of values with substantial prior density. It seems prudent, and is common
practice in specifying diffuse priors, to center priors for slope coefficients at zero (i.e., no effect for
the corresponding predictor).

These considerations lead to the following Stan model:

duncan.model.2 <- "

data {

int<lower=0> n; // number of cases

int<lower=0> k; // number of regressors (less intercept)

vector[n] prestige; // response

vector[n] income; // predictor

vector[n] education; // predictor

}

transformed data{

vector[n] income_d = income - mean(income);

14

vector[n] education_d = education - mean(education);

}

parameters {

vector[k + 1] beta; // regression coefficients

real<lower=0> sigma; // error standard deviation

}

transformed parameters {

vector[n] mu = beta[1] + beta[2]*income_d + beta[3]*education_d;

// conditional expectation of the response

}

model {

prestige ~ normal(mu, sigma); // likelihood

// priors:

beta[1] ~ normal(50, 20);

beta[2] ~ normal(0, 3);

beta[3] ~ normal(0, 3);

sigma ~ normal(0, 10);

}

"

We also specify a vague normal prior centered at zero for the error standard deviation sigma; because
sigma is constrained to be non-negative, only the right half of the normal distribution is used,
producing a “half-normal” prior. In addition to specifying prior distributions for the parameters,
we introduce a transformed data block into the Stan program, defining mean-deviation variables
income_d and education_d for the two predictors.

Fitting the model proceeds as before, and as before, because the diffuse priors contribute little
to the posterior, we obtain results similar to OLS regression:

fit.duncan.2 <- stan(model_code=duncan.model.2,

model_name="Duncan regression, weakly informative priors",

seed=693089, data=data.duncan, iter=10000)

print(fit.duncan.2, pars=c("beta", "sigma"), digits=4)

Inference for Stan model: Duncan regression, weakly informative priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] 47.7444 0.0159 2.0364 43.7312 46.3915 47.7411 49.0845 51.7910 16340 1.0001

beta[2] 0.5989 0.0011 0.1219 0.3561 0.5178 0.5985 0.6789 0.8370 11874 1.0000

beta[3] 0.5454 0.0009 0.0998 0.3481 0.4796 0.5455 0.6103 0.7441 11569 1.0002

sigma 13.4771 0.0117 1.4614 10.9930 12.4487 13.3447 14.3638 16.7165 15584 0.9999

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:15:40 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

brief(lm(prestige ~ I(income - mean(income)) + I(education - mean(education)),

data=Duncan))

(Intercept) I(income - mean(income)) I(education - mean(education))

Estimate 47.69 0.599 0.5458

15

Std. Error 1.99 0.120 0.0983

Residual SD = 13.4 on 42 df, R-squared = 0.828

2.2.1 A More General Stan Program for Linear Models*

Stan supports matrix computations, and so using the matrix form of the normal linear model,
y|X ∼ Nn(α + Xβ, σ2In), allows us to write a more general linear-model Stan program. We treat
the intercept α separately from the other regression parameters. Using flat priors, for example:

linmod <- "

data {

int<lower=0> n; // number of cases

int<lower=0> k; // number of regressors, less constant

matrix[n, k] X; // model matrix, less constant

vector[n] y; // response vector

}

parameters {

vector[k] beta; // regression coefficients

real alpha; // regression intercept

real<lower=0> sigma; // residual standard deviation

}

transformed parameters{

vector[n] mu = alpha + X*beta;

}

model {

y ~ normal(mu, sigma); // likelihood

}

"

Unlike in R, where * is always the elementwise product and %*% is used for the matrix product, in
Stan the product operator * is used more generally for a variety of products including the matrix
product, here for the matrix product X*beta.

Applying this model to Duncan’s regression produces the same results (within the bounds of
similation error) as before:

sample(1e6, 1)

332486

X <- model.matrix(~ income + education - 1, data=Duncan) # suppress intercept

head(X)

income education

accountant 62 86

pilot 72 76

architect 75 92

author 55 90

chemist 64 86

minister 21 84

data.duncan.3 <- list(n=nrow(X), k=ncol(X), X=X, y=Duncan$prestige)

16

fit.duncan.3 <- stan(model_code=linmod,

model_name="Duncan regression, matrix formulation, flat priors",

seed=332486, data=data.duncan.3, iter=10000)

print(fit.duncan.3, pars=c("alpha", "beta", "sigma"), digits=4)

Inference for Stan model: Duncan regression, matrix formulation, flat priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

alpha -6.0250 0.0379 4.4274 -14.7224 -8.9623 -6.0327 -3.0519 2.5734 13647 1.0000

beta[1] 0.5986 0.0012 0.1249 0.3545 0.5167 0.5984 0.6823 0.8452 10634 1.0001

beta[2] 0.5455 0.0010 0.1012 0.3444 0.4785 0.5455 0.6125 0.7439 10260 1.0000

sigma 13.7968 0.0132 1.5479 11.1864 12.7046 13.6622 14.7452 17.2198 13671 0.9999

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:16:24 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

print(fit.duncan.1, pars=c("beta", "sigma"), digits=4)

Inference for Stan model: Duncan regression, flat priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] -6.0613 0.0393 4.3867 -14.8444 -8.9543 -6.0377 -3.1539 2.4602 12485 1.0001

beta[2] 0.5991 0.0012 0.1234 0.3551 0.5164 0.6000 0.6821 0.8372 10471 1.0003

beta[3] 0.5457 0.0010 0.1004 0.3502 0.4786 0.5451 0.6132 0.7429 10347 1.0001

sigma 13.7799 0.0142 1.5811 11.1058 12.6747 13.6174 14.7293 17.3244 12398 0.9999

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:14:55 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

Using the approach described in Section 10.10 of the R Companion, it’s a relatively short step
between linmod and an R function that uses formula notation to fit a Stan model; we assume
flat priors, and adapt code from the lm() function to process the standard formula, data, subset,
na.action, and contrasts arguments. Our function, which we call bayeslm() is shown in Figure 6.
There’s not much new here: We put the Stan model in the global variable blm; we could have made
this variable local to the bayeslm() function, but the model will only be compiled once anyway.
The bayeslm() function passes the ellipses argument (...) to stan() to allow the user to supply
other arguments to the latter.

The bayeslm() function doesn’t treat the regression intercept specially and simply returns the
object produced by stan(). There’s certainly room for improvement here, for example by breaking
out the intercept, allowing predictors to be put in mean-deviation form, providing for the specification
of proper priors, and returning a more R-like model object, with coef(), vcov(), etc., methods. We
invite the reader to pursue these and other possibilities.15

15There are several R packages that provide this kind of standard modeling interface to Stan and other programs

17

blm <- "

data {

int<lower=0> n; // number cases

int<lower=0> p; // number of regressors

matrix[n, p] X; // model matrix

vector[n] y; // response vector

}

parameters {

vector[p] beta; // regression coefficients

real<lower=0> sigma; // residual std. dev.

}

transformed parameters {

vector[n] mu = X*beta; // expectation of y

}

model {

y ~ normal(mu, sigma); // likelihood

}

"

bayeslm <- function(formula, data, subset, na.action, contrasts=NULL, ...){

if (!require(rstan)) stop ("rstan package not available")

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "na.action"),

names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

X <- model.matrix(mt, mf, contrasts)

n <- length(y)

p <- ncol(X)

Data <- list(n=n, X=X, y=y, p=p)

stan(model_code=blm, model_name="Linear Model", data=Data, ...)

}

Figure 6: An R function that uses formula notation to specify and fit a Stan normal linear model
with flat priors.

18

We apply bayeslm() to Duncan’s regression, once more producing results that are similar to
those obtained previously:

sample(1e6, 1)

300732

fit.duncan.4 <- bayeslm(prestige ~ income + education, data=Duncan,

seed=300732, iter=10000)

print(fit.duncan.4, pars=c("beta", "sigma"), digits=4)

Inference for Stan model: Linear Model.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] -6.0788 0.0390 4.3987 -14.8002 -8.9757 -6.0328 -3.1995 2.5250 12720 1.0000

beta[2] 0.6009 0.0012 0.1237 0.3540 0.5185 0.6016 0.6842 0.8428 10138 1.0003

beta[3] 0.5441 0.0010 0.1018 0.3449 0.4767 0.5437 0.6123 0.7446 9448 1.0005

sigma 13.7786 0.0145 1.5657 11.0990 12.6782 13.6339 14.7194 17.2615 11656 1.0004

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:17:08 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

print(fit.duncan.3, pars=c("alpha", "beta", "sigma"), digits=4)

Inference for Stan model: Duncan regression, matrix formulation, flat priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

alpha -6.0250 0.0379 4.4274 -14.7224 -8.9623 -6.0327 -3.0519 2.5734 13647 1.0000

beta[1] 0.5986 0.0012 0.1249 0.3545 0.5167 0.5984 0.6823 0.8452 10634 1.0001

beta[2] 0.5455 0.0010 0.1012 0.3444 0.4785 0.5455 0.6125 0.7439 10260 1.0000

sigma 13.7968 0.0132 1.5479 11.1864 12.7046 13.6622 14.7452 17.2198 13671 0.9999

Samples were drawn using NUTS(diag_e) at Tue Sep 18 17:16:24 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

for Bayesian computation; see, e.g., the brms package (Bürkner, 2017), the rstanarm package (Stan Development
Team, 2016), and, more generally, the CRAN Bayesian Inference task view at https://cran.r-project.org/web/

views/Bayesian.html. We illustrate the use of the rstanarm package in Section 2.3. It’s our view, however, expressed
more fully below, that the principal advantage to using general Bayesian software like Stan is the ability to customize
statistical models to the data at hand. From this perspective, interposing an additional, albeit more familiar, software
layer between the user and Stan is of dubious value.

19

2.3 Hierarchical Regression Models

The most compelling applications of Bayesian methods aren’t typically to standard regression models
such as the normal linear model or generalized linear models,16 but to problem where we want to
specify a customized probability model for the data. We illustrate in this section with a hierarchical
model for longitudinal data on exercise and eating disorders described by Davis et al. (2005) and
discussed in Chapter 7 of the R Companion.

The data for the example are in the data frame Blackmore in the carData package:

brief(Blackmore, rows=c(5, 5)) # first and last subjects

945 x 4 data.frame (935 rows omitted)

subject age exercise group

[f] [n] [n] [f]

1 100 8.00 2.71 patient

2 100 10.00 1.94 patient

3 100 12.00 2.36 patient

4 100 14.00 1.54 patient

5 100 15.92 8.63 patient

. . .

768 286 8.00 1.10 control

769 286 10.00 1.10 control

770 286 12.00 0.35 control

771 286 14.00 0.40 control

772 286 17.00 0.29 control

nrow(Blackmore)

[1] 945

with(Blackmore, by(subject, group, function(x) length(unique(x))))

group: control

[1] 93

group: patient

[1] 138

Recall that the data, for 138 girls hospitalized for eating orders and 93 similar-age control subjects,
are in long form, with several observations at various ages for each girl. The variable exercise

in the data set is estimated number of hours of exercise per week. Because exercise is positively
skewed and has zero values, we transformed this variable using the Box-Cox-with-negatives family:

Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1)

In Section 7.2.5 of the R Companion, we fit several mixed-effects models to the Blackmore

data, treating transformed exercise as the response, and the between-subject factor group and
the within-subject covariate age as predictors, including in our models the interaction between
group and age. We entertained the possibility that different subjects had different trajectories, that
is subject-specific intercepts and slopes, treated as random effects, and that the observation-level

16There are exceptions. For example, incorporating well-founded prior beliefs, based, say, on existing research,
might provide much more useful estimates for sparse data sets than do traditional methods. Similarly, specifying a
vague prior for logistic regression coefficients can avoid infinite estimates in the face of separable data.

20

errors were autocorrelated. Our estimates of the fixed effects didn’t depend strongly on the random-
effects structure that we specified, and here we’ll focus on the model with random intercepts and
slopes but conditionally independent observation-level errors:17

library(lme4)

Loading required package: Matrix

blackmore.mod.lmer <- lmer(tran.exercise ~ I(age - 8)*group +

(I(age - 8) | subject), data=Blackmore, REML=FALSE)

S(blackmore.mod.lmer)

Linear mixed model fit by ML

Call: lmer(formula = tran.exercise ~ I(age - 8) * group + (I(age - 8) | subject),

data = Blackmore, REML = FALSE)

Estimates of Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.17194 0.12653 -1.359 0.17418

I(age - 8) 0.06025 0.02322 2.595 0.00945

grouppatient -0.22578 0.16321 -1.383 0.16656

I(age - 8):grouppatient 0.20114 0.02921 6.887 5.71e-12

Estimates of Random Effects (Covariance Components):

Groups Name Std.Dev. Corr

subject (Intercept) 0.9918

I(age - 8) 0.1314 -0.06

Residual 0.8787

Number of obs: 945, groups: subject, 231

logLik df AIC BIC

-1492.23 8 3000.46 3039.27

As in the text, we subtract 8 from age so that the regression intercept estimates transformed exercise
at age 8, the start of the study. In contrast to the text, and although it makes virtually no difference,
we fit the model here by ML rather than by REML for greater similarity to the Bayesian models we
entertain below.

Although we eventually want to deal explicitly with the zero-exercise values in the Blackmore

data, let’s start by specifying a Stan model similar to the model fit by lmer():

blackmore.model.1 <- "

data {

int<lower=0> n; // total number of observations

int<lower=0> J; // number of subjects

int subject[n]; // subject index

vector[n] patient; // patient dummy regressor

vector[n] age; // within-subject predictor age - 8 yrs

vector[n] tran_exercise; // response variable, transformed exercise

}

17We omit autocorrelated errors to simplify the specification of Bayesian models for the Blackmore data, not because
Stan can’t accommodate autocorrelated errors—it can. As mentioned, in the text we obtained similar results for a
mixed model with random intercepts and slopes.

21

parameters {

matrix[J, 2] B; // subject-specific intercepts and slopes

// (deviations)

vector[4] beta; // group-average intercepts and slopes

real<lower=0> sigma; // error standard deviation

corr_matrix[2] Rho; // correlation matrix of subject-specific

// coefficients

vector<lower=0>[2] psi; // standard deviations of subject-specific

// coefficients

}

transformed parameters {

matrix[2, 2] Psi = quad_form_diag(Rho, psi);

// covariance matrix of subject-specific

// coefficients

real rho = Rho[1, 2]; // correlation between subject-specific

// intercepts and slopes

vector[n] mu = beta[1] + B[subject, 1] + beta[2]*patient + beta[3]*age

+ beta[4] * patient .* age + B[subject, 2] .* age;

// conditional expectation of response

}

model{

tran_exercise ~ normal(mu, sigma); // conditional distribution of response

for (j in 1:J){

B[j,] ~ multi_normal(rep_vector(0, 2), Psi);

// distribution of subject-specific coefficents

}

// priors:

beta ~ normal(0, 10);

sigma ~ normal(0, 10);

psi ~ normal(0, 10);

Rho ~ lkj_corr(2);

}

"

This hierarchical model is considerably more complex than the Stan regression models we entertained
previously in this appendix and consequently requires some additional explanation:

� The definitions in the data block of the Stan program are largely straightforward; we define
the number of observations n (rows in the Blackmore data set) and the number of subjects
J, along with the variables that appear in the model. The variable patient is a 0/1 dummy
regressor, age is age - 8 years, tran_exercise is transformed exercise, and subject is coded
as successive integers, 1 through J.

� The parameters of the model include the J× 2 matrix B of subject-specific intercepts and slopes,
expressed as deviations from group-average intercepts and slopes. In a traditional mixed-effects
model, we’d call these coefficients“random effects,” but in the Bayesian framework all unknown
values are random variables, and so we avoid the term here.

� There is also the vector beta of 4 coefficients to code the group-average intercepts and slopes;
in a traditional mixed model, these would be “fixed effects.”

� The parameter sigma represents the standard deviation of the observation-level errors.

22

� We also need parameters for the standard deviations and correlation of the subject-level inter-
cept and slope coefficients. These are respectively in the vector psi, with 2 elements, and in
the 2-by-2 correlation matrix Rho. Although Rho contains only one unknown parameter—the
correlation between the intercepts and the slopes—we formulate the model in this way to insure
that the covariance matrix of the subject-level coefficients is consistent (*i.e., positive-definite).
We separate the coefficient standard deviations from their correlation, rather than specifying
their covariance matrix directly, to make it simpler to formulate priors for these parameters
(see below). Rho and psi are termed hyperparameters because they pertain to the distribution
of the rows of B, which are themselves unknown values (“parameters”).

� In the transformed parameters block, we define the covariance matrix Psi of the subject-
specific regression coefficients in terms of the coefficient standard deviations and their corre-
lation matrix. If you’re unfamiliar with matrix arithmetic, disregard the following:* The ex-
pression quad_form_diag(Rho, psi) computes the matrix product diag(psi) Rho diag(psi).

� Using the group-average and subject-specific regression coefficients along with the data for the
predictors, we compute the conditional expectation mu of the response for each observation.
The computation is fully vectorized, which requires in places the Stan elementwise product
operator .* to multiply corresponding elements of two vectors—in R we’d just use * for this
operation.

� The model block defines the conditional normal distribution of the response, and specifies that
the subject-specific intercept and slope for each subject are bivariately normally distributed
with zero expectations and covariance matrix Psi defined previously. This specification re-
quires a loop over the J subjects.

� The group-level regression coefficients beta, the observation-level error standard deviation
sigma, and the subject-specific coefficient standard deviations psi are all given weakly infor-
mative normal priors; for the standard deviations, which are constrained to be non-negative,
these are half-normal priors.

� Finally, the prior for the correlation matrix Rho of the subject-specific coefficients is the LKJ
distribution with shape parameter 2. *The LKJ distribution insures that Rho is positive-definite
with 1s down the diagonal, as is appropriate for a correlation matrix. The shape parameter
is similar to the shape parameter for a symmetric Beta(α, α) distribution: LKJ(α) is centered
at zero correlation and is more spread out as α gets smaller. LKJ(1) is essentially a flat prior
for the correlation, while LKJ(2) is weakly informative. The LKJ distribution generalizes to
larger correlation matrices, beyond the bivariate case. See the Stan manual for details.

We proceed to assemble the data for the Stan hierarchical model:

data.blackmore <- with(Blackmore, list(n = nrow(Blackmore),

J = nlevels(subject),

subject = as.numeric(subject),

patient = as.numeric(group == "patient"),

age = age - 8,

tran_exercise = tran.exercise))

and then fit the model using a known randomly selected seed (whose selection is not shown) for
Stan’s random-number generator, timing the computation (which takes quite a long time, more than
10 minutes):

system.time(fit.blackmore.1 <- stan(model_code=blackmore.model.1, chains=4,

model_name= "Hierarchical model for Blackmore data, weak priors",

23

seed=702478, data=data.blackmore, iter=10000,

control=list(max_treedepth=20)))

user system elapsed

4.20 1.43 636.86

print(fit.blackmore.1, pars=c("beta", "sigma", "psi", "rho"), digits=4)

Inference for Stan model: Hierarchical model for Blackmore data, weak priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] -0.1720 0.0014 0.1270 -0.4231 -0.2564 -0.1728 -0.0869 0.0786 8378 1.0005

beta[2] -0.2257 0.0019 0.1646 -0.5489 -0.3354 -0.2257 -0.1130 0.0931 7905 1.0007

beta[3] 0.0606 0.0002 0.0234 0.0150 0.0447 0.0606 0.0765 0.1061 13157 1.0001

beta[4] 0.2008 0.0003 0.0296 0.1428 0.1807 0.2007 0.2208 0.2590 13110 1.0002

sigma 0.8840 0.0003 0.0284 0.8304 0.8646 0.8834 0.9026 0.9415 6675 1.0008

psi[1] 1.0000 0.0009 0.0714 0.8648 0.9509 0.9985 1.0473 1.1434 6292 1.0003

psi[2] 0.1314 0.0004 0.0174 0.0967 0.1198 0.1316 0.1432 0.1653 2202 1.0021

rho -0.0415 0.0027 0.1354 -0.2818 -0.1366 -0.0491 0.0432 0.2481 2599 1.0015

Samples were drawn using NUTS(diag_e) at Mon Oct 01 13:52:34 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

These results based on our weak priors are very similar to the ML estimates produced by lmer()

(see page 21).
As we mentioned (in footnote 15 on page 17), the rstanarm package provides an R-familiar

front end to Stan for a variety of standard statistical models, including linear models, generalized
linear models, and hierarchical models. Here, for example, is how we’d use stan_lmer() from the
rstanarm package to obtain Bayesian estimates for the hierarchical model we’re entertaining for
the Blackmore data, not bothering to set the seed for the random number generator and taking all
defaults:

library("rstanarm")

system.time(blackmore.mod.2.stanlmer <- stan_lmer(tran.exercise ~ I(age - 8)*group +

(I(age - 8) | subject), data=Blackmore))

user system elapsed

3.69 0.33 134.75

print(blackmore.mod.2.stanlmer, digits=4)

stan_lmer

family: gaussian [identity]

formula: tran.exercise ~ I(age - 8) * group + (I(age - 8) | subject)

observations: 945

Median MAD_SD

(Intercept) -0.1826 0.1239

24

I(age - 8) 0.0612 0.0236

grouppatient -0.2171 0.1630

I(age - 8):grouppatient 0.2000 0.0290

sigma 0.8824 0.0283

Error terms:

Groups Name Std.Dev. Corr

subject (Intercept) 0.99340

I(age - 8) 0.13398 -0.051

Residual 0.88258

Num. levels: subject 231

Sample avg. posterior predictive distribution of y:

Median MAD_SD

mean_PPD 0.3177 0.0407

For info on the priors used see help('prior_summary.stanreg').

By default, stan_lmer() employs weakly informative priors (better thought-out than those we
specified above) and so we get similar results to those that we obtained previously. The stan_lmer()
function is substantially faster than our Stan program, but we used 4 chains of 10,000 iterations each,
while stan_lmer() used the default 4 chains of 2,000 iterations each, accounting for the difference.

Having invoked Stan essentially to duplicate our previous mixed-model analysis of the Blackmore
data, let’s now use it to better advantage to formulate a customized model that makes explicit
provision for the zero exercise values in the data. We define a so-called “hurdle” model, similar
in spirit to the zero-inflated Poisson (ZIP) regression model described in Section 10.6.1 of the R
Companion.

The model consists of two parts: A logit model for the probability of nonzero exercise, and a
linear model for transformed exercise given that exercise is nonzero.18 Both parts of the model have
group-level and subject-specific regression coefficients. We encountered minor numerical difficulties
in fitting the model with both subject-specific intercepts and slopes, and so simpified the subject-
specific part of the model to include just intercepts. The Stan model is then as follows:

blackmore.model.2 <- "

data {

int<lower=0> n; // total number of observations

int<lower=0> J; // number of subjects

int subject[n]; // subject index

vector[n] patient; // patient dummy regressor

vector[n] age; // within-subject predictor

vector[n] tran_exercise; // response variable

int<lower=0, upper=1> nonzero[n]; // exercise > 0?

int n_nonzero; // number of nonzero observations

int<lower=1, upper=n>

index_nonzero[n_nonzero]; // indices of nonzero observations

// for effect display:

18Because our model now treats zero exercise separately, we don’t really need the Box-Cox-with-negatives trans-
formation family—we could use a traditional Box-Cox transformation—but stick with it for comparability to our
previous results.

25

int<lower=0> effect_n; // number of values for effect display

vector[effect_n] patient_effect; // for effect display

vector[effect_n] age_effect; // for effect display

}

parameters {

vector[J] b; // subject-specific intercepts

vector[4] beta; // group-level coefficients

real<lower=0> sigma; // error standard deviation

real<lower=0> psi_b; // standard deviation of intercepts

vector[J] z; // subject-specific intercepts for logit part of model

vector[4] zeta; // group-level coefficients for logit part of model

real<lower=0> psi_z; // standard deviation of subject-specific

// logit intercepts

}

transformed parameters {

// conditional expectation for linear part of model

vector[n] mu = beta[1] + b[subject] + beta[2] * patient

+ beta[3] * age + beta[4] * patient .* age;

// linear predictor for for logit part of model

vector[n] eta = zeta[1]+ z[subject] + zeta[2] * patient

+ zeta[3] * age + zeta[4] * patient .* age;

}

model{

nonzero ~ bernoulli_logit(eta); // logit part of model

tran_exercise[index_nonzero]

~ normal(mu[index_nonzero], sigma); // linear part of model

b ~ normal(0, psi_b); // distribution of intercepts for linear model

z ~ normal(0, psi_z); // distribution of intercepts for logit model

// priors:

sigma ~ normal(0, 10);

beta ~ normal(0, 10);

zeta ~ normal(0, 10);

psi_b ~ normal(0, 10);

psi_z ~ normal(0, 10);

}

generated quantities{

vector[effect_n] eta_effect = zeta[1] + zeta[2] * patient_effect

+ zeta[3] * age_effect + zeta[4] * patient_effect .* age_effect;

vector[effect_n] mu_effect = beta[1] + beta[2] * patient_effect

+ beta[3] * age_effect + beta[4] * patient_effect .* age_effect;

mu_effect = mu_effect .* (1. ./ (1. + exp(- eta_effect)));

}

"

The model has several notable new features:

� We add the 0/1 variable nonzero to the data block to serve as the response in the logit part
of the model. We also add n_nonzero, the count of the number of zonzero observations, and
index_nonzero, the indices of the nonzero observations. These variables could have been
computed in a transformed data block in the Stan program, but we find it easier to do these
kinds of computations in R and to pass the results to Stan as “data.”

26

� Also in the data block, we define quantitities that we’ll use to create an effect plot for the
fitted model, giving combinations of ages (age_effect) and groups (patient_effect), and
the number of such combinations (effect_n). Again, we find it convenient to compute these
quantitites in R and to pass them to Stan as data.

� The parameters for the linear part of the model are similar to those in blackmore.model.1, ex-
cept that we now only have subject-specific intercepts, in the vector b, with standard deviation
psi_b.

� The parameters for the logit part of the model parallel those for the linear part, and include
the group-level regression coefficients zeta, subject-specific intercepts z, and the standard
deviation of the intercepts psi_z.

� In the transformed parameters block we compute both the conditional expectation mu of the
response for the linear part of the model and the linear predictor eta for the logit part of the
model.

� The model block uses the bernoulli_logit() function in Stan to define the likelihood for the
logit part of the model. The normal linear part of the model is the same as before, except that
it now applies only to observations where exercise is nonzero. The remainder of the model is
straightforward, with normal distributions for the subject-specific intercepts in both parts of
the model, and diffuse normal priors.

� Finally, we introduce a new generated quantities block into the program to calculate fit-
ted transformed exercise for an effect display of the model. We first compute the fitted logit
eta_effect of nonzero exercise and the fitted transformed exercise mu_effect, and then mul-
tiply the latter by the fitted probability of nonzero exercise computed from the former. In
transforming the fitted logits into probabilities, we use the Stan .* and ./ operators for el-
ementwise multiplication and division of vectors. The computation of these values could be
performed, perhaps more easily, in R after fitting the model, but we want to demonstrate the
use of the generated quantities Stan program block.

We need to add several new variables to the R data list to be passed to Stan, both for the hurdle
model and to compute the effect display:

data.blackmore$nonzero <- as.numeric(Blackmore$exercise > 0)

data.blackmore$n_nonzero <- sum(data.blackmore$nonzero)

data.blackmore$index_nonzero <- which(as.logical(data.blackmore$nonzero))

data.blackmore$effect_n <- 12

(data.blackmore$patient_effect <- rep(0:1, each=6))

[1] 0 0 0 0 0 0 1 1 1 1 1 1

(data.blackmore$age_effect <- rep(seq(8, 18, by=2), 2) - 8)

[1] 0 2 4 6 8 10 0 2 4 6 8 10

We then fit and summarize the model as before, using a new precomputed seed for Stan’s random-
number generator:

fit.blackmore.2 <- stan(model_code=blackmore.model.2, chains=4,

model_name= "Hurdle model for Blackmore data, weak priors",

seed=620314, data=data.blackmore, iter=10000)

27

print(fit.blackmore.2,

pars=c("beta", "zeta", "sigma", "psi_b", "psi_z"),

digits=4)

Inference for Stan model: Hurdle model for Blackmore data, weak priors.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] -0.0227 0.0015 0.1182 -0.2528 -0.1032 -0.0234 0.0567 0.2100 6084 1.0002

beta[2] -0.1226 0.0020 0.1529 -0.4221 -0.2254 -0.1225 -0.0194 0.1753 5841 1.0003

beta[3] 0.0812 0.0001 0.0179 0.0463 0.0692 0.0811 0.0932 0.1163 16852 1.0000

beta[4] 0.1743 0.0002 0.0224 0.1309 0.1592 0.1744 0.1895 0.2180 15451 1.0001

zeta[1] 3.3239 0.0078 0.4445 2.5148 3.0137 3.3046 3.6173 4.2479 3223 1.0023

zeta[2] -0.8036 0.0045 0.4788 -1.7687 -1.1150 -0.7989 -0.4781 0.1143 11352 1.0001

zeta[3] -0.0793 0.0006 0.0708 -0.2175 -0.1267 -0.0794 -0.0327 0.0607 14422 0.9999

zeta[4] 0.2066 0.0008 0.0894 0.0314 0.1464 0.2049 0.2664 0.3830 13996 1.0000

sigma 0.8197 0.0002 0.0238 0.7752 0.8033 0.8193 0.8354 0.8679 20000 0.9999

psi_b 0.8873 0.0004 0.0528 0.7887 0.8503 0.8861 0.9215 0.9957 20000 1.0000

psi_z 1.7687 0.0079 0.2801 1.2705 1.5708 1.7526 1.9453 2.3625 1242 1.0064

Samples were drawn using NUTS(diag_e) at Wed Sep 19 19:50:42 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The transformation of exercise and the two equations of the hurdle model make it difficult to
interpret the results directly from the regression coefficients and so we will draw an effect plot for
the fitted model. We begin by using the extract() function from the rstan package to obtain the
10,000 simulated values of the effects, and then compute means and quantiles from these values:

mu <- extract(fit.blackmore.2, pars=c("mu_effect"))$mu_effect

mu.fit <- colMeans(mu)

mu.025 <- apply(mu, 2, quantile, probs=0.025)

mu.975 <- apply(mu, 2, quantile, probs=0.975)

age.effect <- rep(seq(8, 18, by=2), 2)

patient.effect <- factor(rep(c("control", "patient"), each=6))

Effect <- data.frame(exercise=bcnPowerInverse(mu.fit, lambda=0.25, gamma=0.1),

exercise.025=bcnPowerInverse(mu.025, lambda=0.25, gamma=0.1),

exercise.975=bcnPowerInverse(mu.975, lambda=0.25, gamma=0.1),

group=patient.effect, age=age.effect)

Effect

exercise exercise.025 exercise.975 group age

1 0.9757751 0.7750219 1.216435 control 8

2 1.1383867 0.9333547 1.378213 control 10

3 1.3176798 1.0893709 1.581059 control 12

4 1.5130135 1.2370141 1.835463 control 14

5 1.7227085 1.3723402 2.143509 control 16

6 1.9437319 1.4991721 2.501834 control 18

7 0.8697040 0.7209473 1.039100 patient 8

8 1.3883191 1.1936427 1.607588 patient 10

28

8 10 12 14 16 18

0
2

4
6

8

Age (years)

E
xe

rc
is

e
(h

ou
rs

/w
ee

k)

Group

Patient
Control

Figure 7: Effect plot for the Bayesian hierarchical hurdle model fit to the Blackmore data.

9 2.1325411 1.8673624 2.430411 patient 12

10 3.1625469 2.7748462 3.599344 patient 14

11 4.5445067 3.9578084 5.201936 patient 16

12 6.3504911 5.4597067 7.350821 patient 18

We use the bcnPowerInverse() function to undo the transformation of the response, restoring
exercise to the hours/week scale.

The final step is to draw the effect display, shown in Figure 7:

plot(c(8, 18), c(0, 8), type="n", xlab="Age (years)",

ylab="Exercise (hours/week)")

lines(exercise ~ age, data=Effect, subset=group=="control",

type="b", pch=17, lty=2, lwd=2)

lines(exercise ~ age, data=Effect, subset=group=="patient",

type="b", pch=16, lwd=2)

with(Effect[1:6,], arrows(age.effect, exercise.025, age.effect,

exercise.975, angle=90, lty=2, code=3, length=0.1))

with(Effect[7:12,], arrows(age.effect, exercise.025, age.effect,

exercise.975, angle=90, code=3, length=0.1))

legend("topleft", title="Group", legend=c("Patient", "Control"), lwd=2, lty=1:2,

pch=c(16, 17), inset=0.02)

This graph is similar to the effect plot in Figure 7.10 (on page 369) of the text, computed from the
linear mixed-effects model that we fit to transformed exercise, although the fitted values of exercise
are now a bit larger.

3 Complementary Reading and References

The recent flowering of Bayesian methods is reflected in a vast literature on the subject. Here are
some key sources:

29

� Gelman and Hill (2007) present Bayesian statistical methods from first principles in the context
of regression modeling, including multilevel models. Computing is through R and BUGS, an
older Bayesian modeling program whose name is an acronmym for Bayesian inference Using
Gibbs Sampling) and which was once state-of-the-art. Andrew Gelman is one of the prime
movers behind the development of Stan, and an updated two-volume version of this text that
uses Stan has been in the works for some time.

� McElreath (2016) is a relatively gentle introduction to Bayesian methods, including regression
and multilevel models, and not assuming a strong statistical background. As the subtitle
of the text implies, computing is through R and Stan, largely using McElreath’s somewhat
idiosyncractic rethinking R package, which is freely available but not on CRAN.

� Gelman et al. (2013) is a wide-ranging, and more demanding, presentation of modern Bayesian
methods. The book, now in its third edition, includes an appendix on using Stan and R.

� The Stan manual (Stan Development Team, 2017), available at https://github.com/stan-dev/
stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf, is a valuable and exten-
sive source of information; also see a recent article in the Journal of Statistical Software,
Carpenter et al. (2017), for a briefer introduction to Stan.

Appendix: Acquiring and Installing C++ Compilers for Win-
dows and macOS Systems

In order to use Stan it’s necessary to have a compatible C++ compiler installed on your computer.
Linux/Unix systems typically already have C++ installed. On Windows and macOS systems, you’ll
have to install it, but in both cases installation is simple.

Windows

Go to your favorite CRAN mirror and click on Download R for Windows > Rtools. Alternatively, go
directly to https://cloud.r-project.org/bin/windows/Rtools/. In the Rtools Downloads table,
select a version of the Rtools installer that’s compatible with your version of R, typically the most
recent version of the installer if you have the current version of R.

After the Rtoolsxy.exe installer is downloaded (where xy represents the version of the installer),
run it in the normal manner, for example, by double-clicking on the downloaded file in your web
browser or in the File Explorer. You may take all of the default selections during the installation,
but do make sure to allow the installer to add Rtools to your system path.

macOS

On macOS you’ll have to install Apple’s Xcode developer tools, which are available for free through
the App Store, and can be installed from there in the usual manner.

References

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of
Statistical Software, 80(1):1–28.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,
Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of
Statistical Software, Articles, 76(1):1–32.

30

Davis, C., Blackmore, E., Katzman, D. K., and Fox, J. (2005). Female adolescents with anorexia
nervosa and their parents: A case-control study of exercise attitudes and behaviours. Psychological
Medicine, 35:377–386.

Fox, J. (2009). A Mathematical Primer for Social Statistics. Sage, Thousand Oaks CA.

Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression. Sage, Thousand Oaks,
CA, third edition.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. S. (2013).
Bayesian Data Analysis. Chapman and Hall/CRC Press, Boca Raton FL.

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, Cambridge UK.

McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan.
Chapman and Hall/CRC Press, Boca Raton FL.

Stan Development Team (2016). rstanarm: Bayesian applied regression modeling via Stan. R
package version 2.13.1.

Stan Development Team (2017). Stan Modeling Language: User’s Guide and Reference Manual,
Stan Version 2.17.0.

Stan Development Team (2018). rstan: the R interface to Stan. R package version 2.17.3.

31

