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Linear Models, Third Edition (Sage, 2016)

John Fox

updated: 2024-12-11

Please note that some (or all) of these errors may be corrected in your printing of the book.
Some of these errors (e.g., to cross-references and page references) apparently were introduced in
the final typesetting of the book, and should not have been possible in a LATEX document.

I’m particularly grateful to Likan Zhan, who has contributed a number of the errata; rather
than thanking him individually for each, I’ve simply noted his name in parentheses following his
corrections.

1. p. 56, Figure 4.1: The caption should read “X(0) is loge(X)” not “X(0) is loge(p).” (Likan
Zhan)

2. p. 79, Exercise 4.4: The second line of the equation defining the Yeo-Johnson family of trans-
formation is missing a minus-sign. The equation should read:

X → X [p] ≡
{

(X + 1)(p) for X ≥ 0
−(1−X)(2−p) for X < 0

(I’m grateful to Phil Hoon Oh for pointing out this error.)

As well, the exercise is more effective if in part (a) the range of X is between (say) −4 and 4
rather than −10 and 10, and if the vertical axis is cut off at (say) −20. Similarly, in part (b),
it’s better to let X range from (say) 0.5 to 5 rather than from 0.1 to 10.

3. p. 118: Below the first equation, “the conditional mean of Y is a linear function of X” should
read “the conditional mean of Y is a linear function of X1”. (I thank Kristoph Steikert for
finding this error.)

4. p. 173, Table 8.3: The H0 given for SS(β|α, γ) should read simply “all βk = 0 (µ·k = µ·k′)”
not “all βk = 0 (µ·k = µ·k′) | no interaction.” As well, the vertical alignment of the lines for
SS(α|β) and SS(β|α) is poor: each of these SSs should be moved down one line in the table
(to appear on the same lines as “all . . . ). (Likan Zhan)

5. p. 199: The exercise labeled 8.10 (d) is actually 8.10 (b).

6. p. 217: The full-model likelihood, given in an unnumbered equation near the middle of the
page, should be denoted L1, not L. (Likan Zhan)

7. p. 217: The exponent in the second expression for the likelihood ratio, in an unnumbered
equation below the middle of the page, is incorrect; it should be n/2, not 2/n. The equation
should read

L0

L1
=

(
e′0e0
e′e

)−n/2

=

(
e′e

e′0e0

)n/2
(I’m grateful to Benjamin Rogers for pointing out this error.)
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8. p. 222: The “more conventional” confidence interval for β1 is in error; it should read:

B1 − ta/2, n−3
SE√∑

x∗2i1 (1− r212)
≤ β1 ≤ B1 + ta/2, n−3

SE√∑
x∗2i1 (1− r212)

The same errors occur in Exercise 9.12 on p. 238.

9. p. 235: “When the number of IVs in Z is k + 1, b2SLS = b2SLS” should read, “When the
number of IVs in Z is k + 1, b2SLS = bIV”.

10. p. 254: On line 3, “the vector B1x
∗
1 is also the orthogonal projection of ŷ∗ onto x∗

1” should
read “the vector Bx∗

1 is also the orthogonal projection of ŷ∗ onto x∗
1”. That is, B1 should be

B, and ŷ∗ should be boldface. Later in the same paragraph, the vector ŷ∗ should again be
boldface. (My thanks to Che Zhihua for pointing out the substitution of B1 for B.)

11. p. 261: The hint to Exercise 10.7 should read “Use ŷ∗ = B1x
∗
1+B2x

∗
2.” That is, ŷ∗ is a vector

and so should be in boldface.

12. p. 292: The equation
u ≡ L(X′X)−1L′]−1Lb

should read
u ≡ [L(X′X)−1L′]−1Lb

(Likan Zhan)

13. p. 319: Lines 1–2 of the last paragraph: “. . . because the model in Equation 12.5, specifying a
linear relationship” should read “. . . because the model in Equation 12.15, specifying a linear
relationship”. (I’m grateful to Andrew Swift for reporting this error.)

14. p. 335: There are two errors and one possibly misleading statement in Exercise 12.3. (I’m
grateful to Peter Dalgaard for bringing these problems to my attention.)

• In part (a), the equation for the likelihood should read

L(β, σ2
ε) =

1

(2π)
n/2|Σ|1/2

exp

[
−1

2
(y −Xβ)

′
Σ−1(y −Xβ)

]
That is, the equation should have Σ−1 and not Σ in the exponent.

• In part (b), The MLE of σ2
ε should be

σ̂2
ε =

∑
(Eiwi)

2

n

not

σ̂2
ε =

∑
(Ei/wi)

2

n

• Part (c) would be clearer as, “The MLE of β is equivalent to minimizing the weighted
sum of squares

∑
w2
iE

2
i .”

15. p. 358: Last three lines of the first paragraph: The sentence “To make generalized variance-
inflation factors comparable across dimensions, Fox and Monette suggest reporting GVIFp/2

. . . .” should read “To make generalized variance-inflation factors comparable across dimen-

sions, Fox and Monette suggest reporting GVIF
1
2p . . . .” (Thank you to Peter Dalgaard for

reporting this error.)
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16. p. 390: The left curly brace in the first line of equation for V(β) is misplaced; the equation
should read

V(β) =
{∑ exp(−x′

iβ)

[1 + exp(−x′
iβ)]

2
xix

′
i

}−1

17. p. 415: In Exercise 14.12, the reference to Equation 14.2.1 should be to Equation 14.20 (on
p. 393).

18. p. 432–433 (and correcting a previous version of this erratum): The description of the negative-
binomial regression model for count data is incorrect. The following text replaces the section
on the negative-binomial model. Exercises 15.1 and 15.2 on pp. 464–465 are also affected, and
corrected versions of these exercises appear below. I’m grateful to Peter Dalgaard for alerting
me to this problem.

The Negative-Binomial Model

There are several routes to regression models for counts that use the negative-binomial
distribution (see, e.g., Cameron & Trivedi, 1998, Section 4.2; Long, 1997, Section 8.3;
and McCullagh & Nelder, 1989, Section 6.2.3). The following approach (adapted
from Cameron & Trivedi, 1998, Section 4.2.2) begins with the Poisson regression
model and adds random errors to it based on the gamma distribution to account for
overdispersion.

Recall that in the Poisson GLM with the log link, the observed count Yi for observation
i follows a Poisson distribution with parameter µi, which is the expected count,

p(yi|µi) =
e−µiµyii
yi!

where µi = exp(α+β1xi1 + · · ·+βkxik) = eηi . Individuals who share the same values
of the xs have the same linear predictor η and hence the same expected count. I
explicitly show that the distribution of Yi is conditional on µi because I’m about to
complicate the model for µi.

To accommodate unmodeled heterogeneity, we can add an unobserved error εi to the
linear predictor, obtaining

µi = exp(ηi + εi) = eηieεi = µ∗
i δi

where µ∗
i ≡ eηi and the multiplicative error δi ≡ eεi . If, for all observations, εi = 0 and

thus δi = 1, then the expected count µi = µ∗
i , returning us to the Poisson regression

model, but if the errors differ, then there will be additional—that is, extra-Poisson—
variation in the observed counts Yi.

I have yet to specify a distribution for the δs, but let us suppose now that δi is
gamma-distributed with shape parameter ψ and scale parameter ω = 1/ψ.18 This
in effect defines a one-parameter gamma family in which the scale parameter is the
inverse of the shape, and so E(δi) = ωψ = 1 and V (δi) = ω2ψ = ω. Then the observed
count Yi follows a beta distribution19

p(yi) =
Γ(yi + ψ)

yi!Γ(ψ)
× µyii ψ

ψ

(µi + ψ)yi+ψ
(15.4)

with expected value E (Yi) = µi and variance V (Yi) = µi + µ2
i /ψ = µi + ωµ2

i .
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Unless the gamma scale parameter ω is small, therefore, the variance of Y increases
more rapidly with the mean than the variance of a Poisson variable, and also po-
tentially more rapidly than in the quasi-Poisson model, where the dependence of the
variance of Y on µ is linear rather than quadratic. Making the expected value of Yi
a random variable incorporates additional variation among observed counts for obser-
vations that share the same values of the explanatory variables and consequently have
the same linear predictor η. Because this model incorporates an individual-specific
random term, it may be thought of as a simple mixed-effects model (see Chapters 23
and 24).

With the gamma scale parameter ω fixed to a known value, the negative-binomial
distribution is an exponential family (in the sense of Equation 15.15 in Section 15.3.1),
and a GLM based on this distribution can be fit by iterated weighted least squares (as
developed in the next section). If instead—and as is typically the case—the value of
ω is unknown and must therefore be estimated from the data, standard methods for
GLMs based on exponential families do not apply. We can, however, obtain estimates
of both the regression coefficients and ω by the method of maximum likelihood.

Applied to Ornstein’s interlocking-directorate regression and using the log link, the
negative-binomial GLM produces results very similar to those of the quasi-Poisson
model (as the reader may wish to verify). The estimated scale parameter for the
negative-binomial model is ω̂ = 1.312, with standard error SE(ω̂) = 0.143; we have,
therefore, strong evidence that the conditional variance of the number of interlocks
increases more rapidly than its expected value.20

Exercise 15.1. Testing overdispersion: Recall that ω is the scale parameter for
the gamma component of the negative-binomial regression model (see pages 432–
433). When ω = 0, the negative-binomial model reduces to the Poisson regression
model (why?), and consequently a test of H0: ω = 0 against the one-sided alternative
hypothesis Ha: ω > 0 is a test of overdispersion. A Wald test of this hypothesis is
obtained by dividing ω̂ by its standard error. We can also compute a likelihood-ratio
test contrasting the deviance under the more specific Poisson regression model with
that under the more general negative-binomial model. Because the negative-binomial
model has one additional parameter, we refer the likelihood-ratio test statistic to
a chi-square distribution with 1 degree of freedom; as Cameron and Trivedi (1998,
p. 78) explain, however, the usual right-tailed p-value obtained from the chi-square
distribution must be halved. Apply this likelihood-ratio test for overdispersion to
Ornstein’s interlocking-directorate regression.

Exercise 15.2. The error in Equation 15.4, corrected above, is repeated in part (c)
of this exercise.

19. p. 442: The cross-reference for Table 15.2 is given as page 441 but this table is actually on
page 421. (I’m grateful to Rosa C. Banuelos for pointing out this error.)

20. p. 442: The reference to Equation 15.3 should be to Equation 15.13. (Likan Zhan)

21. p. 444: The formula for c(y, ϕ) for the inverse-Gaussian family is missing a factor of 2. It
should read

c(y, θ) = −1

2
[loge(2πϕy

2) + 1/(ϕy)]

not

c(y, θ) = −1

2
[loge(πϕy

2) + 1/(ϕy)]
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22. p. 454: The estimated dispersion parameter in the displayed expression for the Pearson resid-
uals near the bottom of the page should be denoted ϕ̃, not ϕ̂, and so the expression should
read

ϕ̃1/2(Yi − µ̂i)√
V̂ (Yi|ηi)

(Likan Zhan) As well, the cross-reference should be given as “Equation 15.19 on page 448,”
not as “Equation 15.9 on 436.”

23. p. 481: Towards the bottom of the page,

σs ≡ C(εt, εt−s) = ϕ1E(εt−1,t−s) + ϕ2E(εt−2εt−s)

= ϕ1σs−1 + ϕ2σs−2

should read

σs ≡ C(εt, εt−s) = ϕ1E(εt−1εt−s) + ϕ2E(εt−2εt−s)

= ϕ1σs−1 + ϕ2σs−2

(Likan Zhan)

24. p. 486 & 487: The references to Equation 16.3 near the bottom of p. 486 and near the top of
p. 487 should be to Equation 16.13. (Likan Zhan)

25. p. 498: There’s an error in the hints for Exercise 16.5: Actually, not Σεε but Σ
−1
εε = (1/σ2

ν)Γ
′Γ,

and so detΣεε = (σ2
ν)
n(1/ detΓ)2.

26. p. 567: Within step 1. near the top of the page,

f̂
(0)
1 (xi1) = B1(xi2 − x2)

f̂
(0)
2 (xi2) = B2(xi2 − x2)

should read

f̂
(0)
1 (xi1) = B1(xi1 − x1)

f̂
(0)
2 (xi2) = B2(xi2 − x2)

(Likan Zhan)

27. p. 664. In Exercise 21.1, the bootstrap standard error of the mean is given as SE∗(Ȳ ∗) = S√
n−1

.

This result is slightly in error; the correct expression is SE∗(Ȳ ∗) = S
√
n−1
n .

28. p. 569: About a third of the way down the page, the estimated error variance should be given
as S2

E = RSS/dfres, not S
2
E = RSS/(n− dfres). (Likan Zhan)

29. p. 634: The log-likelihood for the Heckman model given in Equation 20.20 has two errors:
In the first sum, Φ(z′iγ) should be Φ(−z′iγ) or equivalently 1 − Φ(z′iγ). In the second sum,√

1− ρεδ
σε

should be
√

1− ρ2εδ. Thus, the equation should read:

loge L(β, γ,σ
2
ε , ρεδ) =

m∑
i=1

logeΦ (−z′iγ)

+

n∑
i=m+1

loge

 1

σε
ϕ

(
Yi − x′

iβ

σε

)
Φ

z′iγ + ρεδ
Yi − x′

iβ

σε√
1− ρ2εδ
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30. p. 704 & 770: The reference to Raudenbush and Bryk (2012) should be to Raudenbush and
Bryk (2002). (I’m grateful to Michael Truong for pointing out this error.)

31. p. 713: In the table towards the bottom of the page, the ML and REML estimates of ψ12 are
both more accurately given as 0.047 rather than as, respectively, 0.041 and 0.042. It’s possible
that these differences are due to a change in the software used to estimate the model. (Likan
Zhan)

32. p. 716: The reference to Figure 23.4 in the last bullet item should be to Figure 23.5. (Likan
Zhan)

33. p. 723: In the table towards the bottom of the page, the AIC for Model 2 should be 3605.0,
not 360.0. (Likan Zhan)

34. p. 735: In the first bullet item, there’s a missing left square bracket in the definition of y,
which should read, y

(n×1)

≡ [y′
1,y

′
2, . . . ,y

′
m]′. (Likan Zhan)

35. p. 735: Similarly, in the sixth bullet time, there’s a missing left square bracket in the definition
of δ, which should read, δ

(mq×1)
≡ [δ′1, δ

′
2, . . . , δ

′
m]′. (I’m grateful to Michael Truong for bringing

this error to my attention.)

36. p. 736: The last diagonal entry in the matrix at the top of the page should be Λm, not Λ2,
and consequently the equation should read

σ2
ε Λ
(n×n)

≡ σ2
ε


Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λm


(Likan Zhan)

37. On-line Appendices, p. 57: The point at which the partial derivatives are 0 is x1 = x2 = 0,
not at x1 = x2 = 0.5, as stated in the text. The remainder of the example is correct as given.
(I’m grateful to Naresh Gurbuxani for pointing out this error.)
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