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Chapter 26

Causal Inferences From
Observational Data: Directed
Acyclic Graphs1

Among Sir R.A. Fisher’s many seminal contributions to statistics was the fun-
damental technique of randomization in experimental design.2 In the 1950s,
the great British statistician, himself a smoker and consultant to the tobacco
industry, notoriously maintained that there was no good evidence that tobacco
smoking causes lung cancer. One of Fisher’s arguments was that it is possible
that the observed association of lung cancer with tobacco smoking is due to
a common genetic cause. (Fisher made important contributions to genetics as
well as to statistics.) Even without the benefit of hindsight, Fisher’s position
seems perverse (see, e.g., Stolley, 1991), but the more general difficulty of in-
ferring causation from observational data is a real and continuing problem in
epidemiology—witness, for example, the more recent controversy over the ef-
ficacy and safety of hormone-replacement therapy for post-menopausal women
(e.g., Mayo Clinic, 2022).

Observational data are no less prominent in the social sciences than in epi-
demiology, and the issues that social scientists address, for example in the area
of public policy, are probably even more difficult to disentangle: Does capital
punishment decrease homicide? Does the availability of legal abortion decrease
violent crime? Do social-welfare programs raise the standard of living of the
poor?

1Some material in the chapter is adapted with permission from Fox (2008). The treatment
of directed acyclic graphs here profited greatly from discussions with Georges Monette of
York University in Toronto, who, along with Michael Friendly and several other members of
the York University Statistical Consulting Service study group, also commented helpfully on
drafts of the chapter.

2Several of Fisher’s other contributions figure prominently in this text, including the theory
of estimation, the method of maximum likelihood, the notion of degrees of freedom, and the
analysis of variance for linear models.

1



2 CHAPTER 26. CAUSAL INFERENCES: DAGS

The difficulty of drawing causal conclusions from observational data has been
understood for a long time, as has the basic strategy of controlling statistically
for potentially confounding variables, for example by multiple-regression anal-
ysis. Because it is always possible that a confounding prior cause has not been
identified and observed, this strategy has a fundamental limitation not shared
by randomized comparative experiments.3 Although statisticians have intermit-
tently addressed this issue, I think that it’s fair to say that most statisticians
prefer to construe regression equations as predictive rather than causal—for ex-
ample, statisticians tend to call explanatory variables “predictors.” In contrast,
researchers who apply regression models to observational data, in the social
sciences and more generally, typically want to give the models causal interpre-
tations, even if they pay lip service to the oft-repeated dictum that “correlation
doesn’t imply causation.”

I briefly discussed causal inference from observational data previously in the
text (primarily in Sections 1.2, 6.3, 9.7, and 9.8). The purpose of the current
chapter is to deepen the treatment of causal inferences from observational data
by describing an approach to the topic that has achieved recent prominence: the
use of directed acyclic graphs to represent causal relationships among variables.
I’ll also explain how directed acyclic graphs can elucidate the analysis of missing
data, and the relationship between causal graphs and the potential-outcomes (or
counterfactual) approach to understanding statistical causation.

The treatment of causal graphs in this chapter is relatively abbreviated,
and I refer the interested reader to the recommended readings at the end of
the chapter. In particular, the simple examples in the chapter are meant to
clarify essential ideas concerning causal inference from observational data, but
are insufficiently rich to develop the subject in detail.

26.1 Graphs
In the sense that it is used here, a graph is a labeled set of nodes (points),
{A,B,C, . . .}, connected in pairs by edges (visualized as line segments), for
example, {A—B,B—C, . . .}. Some examples of graphs appear in Figure 26.1.
When a graph is represented visually, as here, the layout of the nodes on the
page and the lengths of the edges connecting the nodes are irrelevant: Only the
connections among the nodes created by the edges are important. Thus, panels
(a) and (b) are different visual representations of the same graph.

The graph in panels (a) and (b) of Figure 26.1 is an undirected graph, while
those in panels (c), (d), and (e) are directed graphs, with the edges represented
by single-headed arrows. The node at the tail of each arrow in a directed graph
is the parent node and that at the arrow head is the child node.

A path through a graph between two nodes is a sequence of consecutive edges
connecting the nodes. All of the graphs in Figure 26.1 are completely connected
in that there are paths between all pairs of nodes. A directed path (in a directed

3As explained in Section 1.2, however, statistical evidence of causation isn’t completely
unambiguous even in randomized experiments.
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Figure 26.1 Examples of graphs: (a) and (b) an undirected graph; (c) a directed acyclic graph;

(d) and (e) directed cyclic graphs.
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graph) is a path all of whose arrows point in the same direction, in the sense
that each intermediate node in the path is both a child and a parent. Thus, the
graph in Figure 26.1(c) has directed paths from node A to B (A −→ B), and
node C to B (C −→ B and C −→ A −→ B), but not from node A to C or from
node B to C. The initial node of a directed path is an ancestor of the terminal
node; and the terminal node is a descendant of the initial node.

A directed graph is acyclic if it has no reciprocal paths (as in Figure 26.1(d))
or loops (as in Figure 26.1(e)). Thus, for example, Figure 26.1(c) represents a
directed acyclic graph (or DAG). DAGs interpreted as causal graphs are the
focus of this chapter.

A graph is a labeled set of nodes (points) connected by edges (line segments).
Graphs may be undirected or directed, in which case the edges are represented as
single-headed arrows. The node at the head of each arrow in a directed graph is
the parent node and that at the tail is the child node.
A path through a graph between two nodes is a sequence of consecutive edges
connecting the nodes, and a directed path is a path all of whose arrows point
in the same direction. The initial node of a directed path is an ancestor of the
terminal node, which is a descendant of the initial node. A directed graph is
acyclic if it has no reciprocal paths or loops.

26.1.1 Causal Directed Acyclic Graphs
Graphs have a variety of applications, including, for example, to social-network
analysis. The use of graphs to depict causal relationships among variables—
where variables are represented as nodes in the graph, connected by arrows
representing direct causal relationships—dates to the work of the geneticist Se-
wall Wright on path analysis (Wright, 1921). As originally formulated, Wright’s
path analysis was closely tied to linear least-squares regression, and more recent
generalizations to structural-equation models (e.g., Duncan, 1975; Bollen, 1989)
are also associated with parametric regression models. I’ll have a bit more to say
about path analysis later in the chapter, in connection with an example drawn
from Blau and Duncan (1967),4 who (along with Duncan, 1966) introduced
Wright’s method to sociologists. More recent work on causal directed acyclic
graphs, most prominently by the computer scientist and philosopher Judea Pearl
(Pearl, 2000, 2009; Pearl et al., 2016; Pearl and Mackenzie, 2018), is nonpara-
metric, in that it doesn’t require that the regression models corresponding to a
graph have particular functional forms.5

4See Section 26.7.
5Indeed, it isn’t even necessary to estimate causal relationships in a DAG by regression,

though that is the strategy that I’ll pursue in this chapter.
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Figure 26.2 DAGs with W confounding the effect of X on Y . In (a) the confounding is partial;

in (b) it is complete.

Directed acyclic graphs (or DAGs) represent causal relationships among variables,
where the variables are the nodes of the graph, and arrows connecting the variables
represent direct effects, with the direct cause (or parent node) at the tail of an
arrow and the effect (or child node) at the tip. To say that DAGs are acyclic
implies that causation is unidirectional, with no reciprocal arrows or feedback
loops.

Two examples of causal DAGs appear in Figure 26.2. The DAG in Fig-
ure 26.2(a) is familiar: It is essentially the same as Figure 1.1 (on page 7)6 and
Figure 6.2(a) (on page 121).7 I use the following conventions (the first of which
isn’t universal) in drawing the DAGs in Figure 26.2:

• Observed variables are denoted by upper-case Latin letters, typically from
near the end of the alphabet, with the causal explanatory variable of
interest X and the response Y .

• The direct effect of one variable on another is represented by a directed
arrow from the cause to the effect. Moreover, because it is acyclic, a DAG
cannot have reciprocal direct effects, as in Figure 26.3(a), or a closed

6Page references in this chapter may be to pages within the chapter or to pages in the
printed text (i.e., Chapters 1 through 24). References should generally be clear from the
context; here, e.g., Figure 1.1 is from Chapter 1 of the text.

7There is this difference, however: I described Figure 1.1 as “an informal ‘causal model,’ ”
while DAGs are formal causal models with an associated statistical theory that I will partially
develop in this chapter.
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Figure 26.3 Graphs that contain causal cycles and hence are not DAGs: (a) reciprocal

causation; (b) a causal loop.

causal loop, as in Figure 26.3(b). Variables that are causes but never
effects (i.e., variables to which no arrows point, and which, hence, have no
parents in the DAG), such as W in the DAGs in Figures 26.2(a) and (b),
are termed exogenous, while variables that are effects and possibly, but
not necessarily, causes (i.e., variables to which arrows point and which,
hence, have parents), such as X and Y , are termed endogenous.

In Figure 26.3, and more generally in this chapter, I name the variables in
causal graphs, not to provide serious applications but simply to make it easier to
think concretely about the graphs.8 Figure 26.3(a), for example, specifies that
individuals’ attitude (say to members of another race) affects their behavior,
and that their behavior affects their attitude. Figure 26.3(b) is similar, except
that the effect of behavior on attitude is mediated by exposure. It is therefore
possible to imagine causal graphs that are not DAGs.9

26.2 Confounders and Mediators

In Figure 26.2, I imagine that we’re interested in estimating the effect of indi-
viduals’ education (X) on their wealth (Y ), and that the wealth of their families
of origin (W ) is a common prior cause of education and wealth. Figures 26.2(a)
and (b) illustrate confounding, where the confounder W is causally prior to both
X and Y .

8For an application of DAGs, see Section 26.7.
9It is also sometimes possible to estimate such causal systems, as in nonrecursive structural-

equation models, a topic not discussed in this text (but see the references at the end of the
chapter).
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A confounder creates a back-door path connecting X and Y , a kind of undi-
rected path that generates spurious (i.e., non-causal) association between these
two variables. I’ll elaborate the idea of back-door paths presently.

In Figure 26.2(a), confounding is partial, in the sense that there is still a
true causal source of association between Y and X, represented by the directed
arrow linking the two. Suppose that the direct effect of X on Y is positive: An
increase in X tends to produce an increase in Y .10 Depending on the signs of
the effects ofW on X and Y , the overall relationship between X and Y could be
positive, negative, or absent. The key—and familiar—point is that the overall
statistical association between Y and X is not the same as the effect of X on Y
due to the presence of the confounder W . Figure 26.2(b) is similar, except that
confounding is complete and there is no effect of X and Y .

The pattern of the path connecting X and Y in Figure 26.2(b) is called
a causal fork, and its qualitative influence on the association of X and Y is
essentially unchanged if other variables appear in the branches of the fork; for
example, X ←− U ←−W −→ V −→ Y generates spurious association between
X and Y .

We already know how to deal with an observed confounder like W in Fig-
ure 26.2: We can control statistically for W to estimate the partial relationship
between Y and X. If all of the partial relationships are linear, we could perform
a multiple linear regression of Y on X and W , taking the coefficient of X as
an estimate of the effect of X on Y . In the case of Figure 26.2(b), we’d expect
an estimate close to 0 (and a population regression coefficient of precisely 0).
More generally—that is, whether or not the regressions are linear—the DAG in
Figure 26.2(b) implies that Y is statistically independent of X given W , which
is often symbolized as (Y ⊥⊥ X) |W .

A confounder creates a back-door path connecting a causeX and effect Y , which in
turn generates spurious (i.e., non-causal) association between these two variables.
We can estimate the effect ofX on Y by controlling statistically for the confounder.
The path X ←−W −→ Y is called a causal fork.

10In the general context of DAGs, effects don’t necessarily have a consistent sign (i.e., aren’t
necessarily monotone) and certainly need not be linear. For example, the effect of X on Y
might be quadratic. It is, however, simpler to consider, at least initially, monotone or even
linear effects.

We can go further: A DAG such as Figure 26.2(a), with arrows X −→ Y and W −→ Y
implies that the probability distribution of Y given X and W depends jointly on the values
x of X and w of W , but the function specifying this dependence is quite general and need
not be additive in X and W ; that is, p[y|(X = x,W = w)] = fY (y;x,w) (where p is a
probability for discrete Y or probability density for continuous Y ), and so, for example,
X and W might interact in and arbitrary manner in determining Y . This is true even if
we focus on the conditional mean of Y , that is, the regression of Y on X and W , where
µ ≡ E[Y |(X = x,W = w)] = fµ(x,w), and where fµ(·) isn’t constrained parametrically by
the DAG to take a particular functional form.
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Figure 26.4 DAGs with W mediating the effect of X on Y . In (a) mediation is partial; in (b)

it is complete.

The DAG in Figure 26.4(a) is also familiar, representing causal mediation,
where W (education) intervenes between X (family wealth) and Y (wealth).
Indeed, Figure 26.4(a) is really just a rearrangement of Figure 26.2(a), with W
and X switching roles: Recall that I reserve X to represent the cause of interest.
In Figure 26.4(a), mediation is partial, and there is a direct effect of X on Y , in
addition to the indirect effect through W ; in Figure 26.4(b), in contrast, there
is no direct effect, and mediation is complete.

The pattern of the directed path linking X to Y in Figure 26.4(b) is called
a causal chain, and, as was true for forks, the qualitative influence of a causal
chain is unaffected by interpolating additional variables between X and Y . For
example, in X −→ U −→ W −→ V −→ Y , X and Y are associated because of
the indirect effect of X on Y through W (and U and V ).

An important point (made previously in Sections 1.2, 6.3, and 9.7) is that the
DAGs in Figures 26.2 and 26.4 have identical observable implications, although
widely divergent interpretations. Both Figure 26.2(b) and Figure 26.4(b), for
example, imply that (Y ⊥⊥ X) |W , but in the first case we would explain away
the association of Y and X as spurious (i.e., non-causal), while in the second
case we would elaborate the mechanism through which X affects Y . Indeed,
if, as I assume, our object is to estimate the effect of X on Y , we should not
control statistically for the mediator W in the DAGs in Figures 26.4(a) and (b).
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A mediator is a variable that intervenes between a cause X and effect Y . We
should not control statistically for a mediator if we want to estimate the effect of
X on Y . The path X −→ W −→ Y is called a causal chain. Confounders and
mediators can’t be distinguished solely on statistical grounds.

26.3 Closing Back-Door Paths
I have explained that a single confounder, as in Figures 26.2(a) and (b) (on
page 5), opens a back-door path linking the potential cause of interest X and
effect Y , producing a spurious source of statistical association betweenX and Y .
Back-door paths can be more complex, as illustrated in Figure 26.5(a), where
a back-door path linking X and Y passes through the two prior variables V
and W , and in Figure 26.5(b), where there are two back-door paths, through
V , W and U , and through W and U . In all of the examples in this chapter,
involving relatively simple DAGs, it is easy to discern the back-door paths. The
more general identification of back-door paths and other features of DAGs can
be more complex, however.11 Nevertheless, all back-door paths end in arrows
pointing directly to X and Y , traverse causally prior variables, and reverse
direction once at an eventual confounder.

In the elementary cases illustrated in Figure 26.2, we can obtain unbiased
estimators of the effect of X on Y (that is, no effect in the case of Figure 26.2(b))
by controlling statistically for the confounder W . Similarly, in the simple cases
illustrated in Figure 26.4, we know that we should not control for the mediator
W , for to do so would eliminate the indirect effect of X on Y through W . More
generally, to estimate the effect of X on Y we must close (or block) all of the
back-door paths connecting the two variables in the DAG. That, however, does
not in general require that we control for all variables in the DAG that are
causally prior to X and Y . Any back-door path can be blocked by controlling
statistically for at least one causally prior variable along it, and blocking all
back-door paths connecting X and Y serves to identify the effect of X on Y .
We should never, however, control for a variable that intervenes causally between
X and Y , even if it’s on a backdoor path (see an example below). This result
(or conditions equivalent to it) is called the back-door criterion.

Consider, for example, the DAG in Figure 26.5(a): To block the back-door
path in this DAG, we can control either for V , or for W , or for both. Any
of these choices would produce an unbiased estimator of the effect of X on Y .
Which choice is best? Suppose, again for simplicity, that all of the regressions
are linear and that we use multiple least-squares regression. Because regressing
Y on X and V , on X andW , and on X, V , andW all yield unbiased estimators

11For additional details, consult the recommended readings at the end of the chapter. More-
over, the rules for analyzing DAGs are well understood and are instantiated in statistical soft-
ware; see, in particular daggity (Textor et al., 2017), which I used in preparing the material
in this chapter.



10 CHAPTER 26. CAUSAL INFERENCES: DAGS
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Figure 26.5 DAGs with back-door paths: (a) a single back-door path between X and Y
through V and W ; (b) two back-door paths, through V,W, and U , and through

W and U . (c) a variable, V , that’s simultaneously on a fork and a causal chain.
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of the effect, say βX , of X on Y , we would prefer the regression that produces
the most efficient—that is, the lowest-variance—estimator of βX .

Recall (adapting Equation 6.3 on page 113) the formula for the sampling
variance of the least-squares regression coefficient BX (estimating βX):

V (BX) =
1

1−R2
X

× σ2
ε∑

(Xi −X)2
(26.1)

where R2
X is the squared multiple correlation for the regression of X on the

other explanatory variables in the main regression, and σ2
ε is the error variance

for the regression of Y on X and the other explanatory variables.12

There are, therefore, two relevant factors that affect the sampling variance
of BX : (1) the degree of collinearity between X and the other explanatory
variables in the regression model; and (2) the size of the error variance.13 On
both grounds, we should control for W and ignore V :

• Because there is no direct arrow between V and Y , the population regres-
sion coefficient for V in the multiple regression of Y on X, V , and W is
0; to include the irrelevant regressor V could only decrease the precision
of estimation, to the degree that V is correlated with W and X.

• Moreover, we should prefer to regress Y onX andW rather than to regress
Y on X and V , because V is causally closer than W to X, and hence will
be more correlated than W with X (thus producing a larger R2

X).

• Finally, V is more remote causally than W from Y (its effect on Y is
transmitted solely through W ) and so including V rather than W in the
regression would increase the error variance.

12As mentioned in Section 13.1, another way to think about the sampling variance of BX is
in terms of the added-variable plot (AV plot) for X, where the variable on the horizontal axis
is the residual, say X̃, from the regression of X on the other regressors and the variable on
the vertical axis, , say Ỹ , is the residual for the regression of Y on the other regressors (also
see Section 11.6.1). Then

V̂ (BX) =
S2
E∑
X̃2
i

where S2
E is the residual variance from the original regression, also representing the spread

round the regression line in the AV plot. To obtain a precise estimate of βX , we want the
residual variation to be as small as possible and the conditional variation in X to be as large as
possible, as long as BX is an unbiased estimator of βX . See Exercise 26.3(b) for an application
of AV plots to these ideas.

13The third factor in Equation 26.1,
∑

(Xi −X)2 = (n − 1)S2
X , doesn’t change from one

regression to another, and so isn’t relevant to the current context.
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To obtain an unbiased estimator of the effect of X on Y we must close (i.e.,
block) all of the back-door paths connecting the two variables in the DAG (the
back-door criterion). Closing all back-door paths does not in general require that
we control for all variables in the DAG that are causally prior to X and Y . It’s
generally advantageous to control for the antecedent variable or variables that are
sufficient to close all back-door paths and that, in doing so, produce the most
precise estimate of the effect of X on Y . When we have a choice, we therefore
prefer to control for antecedent variables that are close to Y and remote from X.

It is important to understand, however, that these conclusions assume that
the causal structure of the DAG is correct. If, for example, were there an
additional direct arrow (not shown) between V and Y , then it might well be
advantageous to control for V , which would block both back-door paths—the
path through V alone and the path through V and W . Additionally, in this
case, it may be (but is not necessarily) best to control for V and W , inasmuch
as adding W to the regression would both decrease the error variance, thus
increasing the precision of estimation of βX , and increase collinearity, thus de-
creasing the precision of estimation. The DAG doesn’t imply which of these
opposing consequences is larger.

Even though it isn’t necessary, and may be suboptimal, to control for all
prior variables in a DAG such as Figure 26.5(a), it is in a sense safest to do so.
Suppose, for example, that this DAG incorrectly omits direct arrows from V to
Y and from W to X (again not shown). In this case, we should control for both
V and W to close all back-door paths so as to obtain an unbiased estimator of
the effect of X on Y .

Figure 26.5(b) elaborates Figure 26.5(a) by adding a direct path from W
to Z and a variable U that wholly mediates the effect of W on Y . There are
additional back-door paths linking X to Y in this DAG, but no new principles,
and I leave its analysis as an exercise for the reader.14

Figure 26.5(c) includes the variable V , which is simultaneously on a fork
linking X and Y (X ←− W −→ V −→ Y ) and a causal chain between the
two focal variables (X −→ V −→ Y ). In a case such as this, we should not
control for the mediator V , for doing so would block the indirect effect of X on
Y through V . We can instead close the back-door path by controlling for W ,
which is antecedent to both X and Y .

26.4 Colliders and Descendants
The phenomena highlighted by DAGs are specific instances of a more general,
and familiar, idea: that partial and marginal relationships can differ. The role
of a DAG is to identify which partial (or possibly marginal) relationships can

14See Exercise 26.1.
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Figure 26.6 DAGs with colliders: (a) a consequent collider; (b) a possibly antecedent collider.

reasonably be given causal interpretations. Our examination of DAGs has thus
far suggested that to estimate the effect of X on Y we may want to control for
(some) causally prior variables to close back-door paths that induce spurious
sources of association between X and Y , and that we should generally not
control for variables that intervene causally between X and Y . I believe that
these conclusions are reasonably intuitive.

26.4.1 Colliders

So-called colliders are an additional, and less intuitive, class of variables for
which we should not control in estimating the effect of X on Y . Colliders are
variables that block sources of non-causal association between X and Y , and
controlling for a collider opens a non-causal path between the two focal variables.

Two examples of colliders appear in Figure 26.6. The variable U is a collider
in both panels (a) and (b):15 In each case, there is a path in the DAG linking
X and Y through U , with two arrows pointing towards U (hence the term
“collider”). That both arrows point towards U blocks association from flowing
through this path, and controlling for U in effect unblocks the path, biasing the
estimator of the effect of X on Y .

As I said, I believe that the idea that a collider blocks a non-causal path is
less intuitive than the notion that a confounder creates a back-door path. As
a consequence, using the DAG in Figure 26.6(b), I generated simulated data
to illustrate this phenomenon. In particular, I drew n = 1000 independent
observations on the variables W , V , X, Y , and U according to the following

15The story told by Figure 26.6(b) is not entirely credible, in that there almost surely should
be an arrow between race (V ) and family wealth (W ). I omitted this arrow to create a simpler
example, but see Exercise 26.2.
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Table 26.1 Several Regressions for Y in the Simulated Data With Collider U

Coefficient Model (Explanatory Variables)
(SE(B)) 1. (X) 2. (X,U) 3. (X,V ) 4. (X,U, V ) 5. (X,U,W ) 6. (X,U, V,W )
BX 1.033 0.166 0.998 0.956 0.930 0.930

(0.032) (0.017) (0.008) (0.023) (0.042) (0.031)
BU 0.888 0.044 0.946 0.024

(0.012) (0.023) (0.011) (0.033)
BV 0.993 0.949 0.968

(0.008) (0.024) (0.033)
BW −0.877 0.039

(0.045) (0.046)
SE 1.035 0.407 0.256 0.255 0.346 0.255

scheme:

W ∼ N(0, 1)

V ∼ N(0, 1)

X ∼ N(W, 0.252)

Y ∼ N(X + V, 0.252)

U ∼ N(W + V, 0.252)

By construction, the effect of X on Y is the population regression coefficient
βX = 1. The DAG in Figure 26.6(b) suggests that we can obtain an unbiased
estimator of βX by regressing Y on X alone. Because V is a direct cause of
Y and not a cause of X, it is also advantageous to include the covariate V
in the regression to reduce the size of the error variance and hence increase
the precision of estimation of βX . In contrast, including W , a direct cause of
X but not of Y , in the regression would serve only to decrease the precision of
estimation. Finally, including the collider U in a regression along with X should
bias the estimator of βX .

Table 26.1 summarizes the results of fitting several least-squares regressions
to the simulated data, and the coefficient of X in each model is graphed in
Figure 26.7,16 along with a 95% confidence interval.17

• Model 1 includes X alone and, as expected, provides an estimate BX close
to βX = 1.

• Also as expected, adding the collider U to Model 2 biases the coefficient
of X, which is now much smaller.

16I’m grateful to Michael Friendly of York University for suggesting that I draw this graph.
17I’ve omitted the model that includesX andW : See Exercise 26.3, which slightly elaborates

this example.
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Model (Explanatory Variables)
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Figure 26.7 Coefficients BX of X and 95% confidence intervals for the models in Table 26.1,

estimating βX = 1.
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• In contrast, including the covariate V along with X in Model 3 yields an
unbiased estimator of βX that has a much smaller standard error (i.e.,
is much more precise) than the estimate from Model 1. The regression
standard error SE for this model is close to the error standard deviation
σY = 0.25 in the population regression equation that generated the data
for Y , which, recall, included X and V .

• Models 4, 5, and 6, include the focal explanatory variable X, the collider
U , and one or both of the other variables V and W on the path with
the collider. Because they block the spurious path opened by including
the collider, these models yield unbiased estimators of the effect of X,
but none provides an estimate of βX as precise as that in Model 2, which
includes only X and V .

Colliders are variables that block sources of non-causal association between X

and Y . Controlling for a collider opens a non-causal path between the two focal
variables, biasing the estimated effect of X and Y .

26.4.2 Descendants
A descendant of a variable V in a causal DAG is a variable U affected directly
or indirectly by V . Conversely, in this circumstance, V is an ancestor of U .
When the focal causal variables X and Y are common ancestors of a variable
U (and there is a directed path from X to U that doesn’t go through Y ), then
U is a collider, as illustrated in the DAG in Figure 26.8, and previously in the
DAG in Figure 26.6(a) (page 13).

Figure 26.8 also shows three other direct descendants: V of X, T of Y , and
W of the collider U (and, hence, indirectly of X and Y ). We know that the
consequence of controlling for a collider is to bias the estimator of the effect of X
on Y . Are there consequences of controlling for the other kinds of descendants?

• Controlling for a descendant of X, such as V in Figure 26.8, doesn’t bias
the estimator of the effect of X on Y , but it impairs its efficiency by
decreasing conditional variation in X.

• Controlling for a descendant of a collider, such as the descendant W of U ,
biases the estimate of the effect of X on Y , because W serves as a partial
proxy for U . That is, we can think of W as an imperfect measure of the
collider U with a measurement-error component.

• Controlling for a descendant of Y , such as T , biases the estimator of the
effect of X for a similar reason: T is an version of Y with an increased
error component, and it’s not sensible to control for the response.
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education

Figure 26.8 A DAG with four different kinds of descendants: a collider U , which is a common

descendant of X and Y ; a descendant V of X ; a descendant T of Y ; and a

descendant W of the collider U .

The general lesson to be drawn from these observations is that we should not in
general control for consequences of X and Y . Although controlling for con-
sequences of the response (“symptoms”) can improve prediction of Y , often
dramatically, the goals of causal inference and prediction are different and fre-
quently contradictory.

The fictional story told by the substantive variable names in Figure 26.8
isn’t entirely credible. In particular, we might well think of size of house as a
cause, rather than a consequence, of wealth, reversing the direction of the arrow
between U and W . Suppose we make this change to the DAG and then control
forW , regressing Y on X andW to assess the effect of X on Y . In the modified
DAG (which isn’t shown), W ⊥⊥ X and W ⊥⊥ Y , so controlling for W has no
expected effect on the regression.18

Controlling for descendants of both X and Y or of Y alone biases the estimate
of the effect of X on Y , while controlling for descendants of X alone makes the
estimate of the effect of X less precise. We should therefore avoid controlling for
descendants of the focal causal variables.

18For an illustration of this point, and more generally of the phenomena concerning con-
trolling for descendants in this section, see Exercise 26.4.
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26.4.3 Selection Bias and Colliders

DAGs with colliders illuminate how self-selection can produce biased estimates
of causal effects, and, conversely, the process of self-selection can illuminate why
controlling statistically for a collider induces bias. To illustrate, I’ll adapt an
example from Section 9.8 on instrumental-variables estimation.19

Suppose that to estimate the effect of private-school versus public-school at-
tendance on the academic performance of economically disadvantaged students,
a researcher randomly assigns a group of volunteer students to two experimen-
tal conditions: The students in the treatment condition receive vouchers to
attend well resourced private schools, while those in the control condition do
not. Unlike in Section 9.8, I’ll assume here that compliance is perfect, so that all
students who receive vouchers attend private schools, while all students who do
not receive vouchers attend public schools. On the other hand, not all students
participate in the evaluative phase of the study, and self-selection of participa-
tion (denoted S = 1 for participants and S = 0 for non-participants) is related
both to type of school attended (X = 1 for those who attended private schools,
X = 0 for those who attended public schools) and academic achievement at the
end of the study (assessed by a standardized exam, Y ).

I generated simulated data for this experiment according to the following
scheme:

• Half of n = 5000 students were picked at random to attend private schools
(for whom Xi = 1), and the other half attended public schools (Xi = 0).

• The response was generated so that private-school students had slightly
better test scores on average than their public-school counterparts, Yi ∼
N(0.1×Xi, 1).

• Participation in the study was a function of both X and Y (as depicted in
the DAG in Figure 26.9), with the probability of selection Pr(S) following
the logistic-regression equation

Pr(Si = 1) =
1

1 + exp[−(2.5Xi + Yi)]

Selection is therefore strongly dependent on both type of school attended
and students’ test scores. For example, 50 percent of public-school stu-
dents and 89 percent of private-school students participated in the study.

Table 26.2 shows group mean academic achievement (Y j , j = 0, 1), the dif-
ference in means (Y 1−Y 0), the standard error of the difference, and the p-value
from an independent-samples t-test of the difference for the full data set and
for two subsets of the data: the students who participated in the study, and

19Also see the discussion of DAGs and instrumental variables in Section 26.6.1. Although
the material on instrumental variables is in starred parts of the text, the example in the
current section doesn’t depend on an understanding of instrumental variables.
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Figure 26.9 The selection variable S is a collider, affected by both X and Y . Looking only at

self-selected subjects, for whom S = 1, controls for the collider and consequently

biases the estimate of the effect of X on Y .

Table 26.2 Mean Academic Achievement by Type of School Attended, for the Full Data Set,

for Participants, and for Non-participants

Full Data Set Participants Non-participants
Public-School Mean Y 0 0.015 0.403 −0.379

Private-School Mean Y 1 0.108 0.207 −0.721

Difference in Means Y 1 − Y 0 0.094 −0.196 −0.342
SE(Difference) 0.020 0.033 0.062
p-Value for t-Test < .001 � .0001 � .0001

those who didn’t participate.20 Of course, in a real data set we would only be
able to observe the participants—an advantage of using simulated data for this
example.

As expected, for the full data set, the estimates Y 0 for public-school students
and Y 1 for private-school students are close to the population means of µ0 = 0
and µ1 = 0.1, respectively, and the difference in means Y 1 − Y 0 = 0.094 is
associated with a small p-value. For both subsets of students, however, the sign
of the difference is reversed: Y 1 − Y 0 = −0.196 for participants and −0.342 for
non-participants. Both of these subset differences are associated with very small
p-values. This is, therefore, an instance of Simpson’s paradox: Not only are
the partial relationships of academic achievement to type of school controlling
for participation different from the marginal relationship, but the partial and
marginal relationships differ in direction.

20The t-test is equivalent to a test for the coefficient of X in a dummy-variable regression
of Y on X, where the coefficient of X is just the difference in group means.
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How are we to understand these results? As mentioned, participation is
strongly related to both type of school attended and academic achievement. Al-
most all private-school students participated in the study, and so both relatively
low- and high-achieving private-school students were included. For public-school
students, participation was driven more by academic achievement, and so rela-
tively low-achieving public-school students tended to be excluded. Similarly, the
private-school students who did not participate were predominantly the lowest
achievers among their peers. The differential selection of public- and private-
school students accounts for the reversal in sign of the relationship between
academic achievement and type of school attended within the two participation
subsets.

Selection bias in estimating the effect of X on Y can be understood as controlling
for a collider, in which we examine the partial relationship between X and Y

within one category of the collider—that is, for self-selected subjects.

26.5 Statistical Independencies and d-Separation
Two variables, say X and Y , in a DAG are said to be d-separated if (1) there
are no causal forks or chains connecting the variables, and (2) if any other paths
connecting the variables are blocked by colliders. Variables that are d-separated
are marginally (i.e., unconditionally) statistically independent, X ⊥⊥ Y . Vari-
ables that aren’t d-separated are d-connected and marginally dependent.21

Now imagine that we examine the relationship between X and Y holding
a set of other variables W = {W1,W2, . . . ,Wk} constant (i.e., conditioning on
the values of the variables in W). Then X and Y are conditionally d-separated
given W if (1) one or more variables in W block every fork and chain connecting
X and Y , and (2) no path connecting X and Y is unblocked by a collider or
the descendant of a collider in W, unless that path is also blocked by one or
more other variables in W. Variables that are conditionally d-separated are
conditionally independent, (X ⊥⊥ Y )|W. The conditioning variables W need
not be unique; that is, there may be more than one set of conditioning variables
that satisfy these criteria.

Consider, the slightly more complicated DAG in Figure 26.10:

• There are no unblocked arrows connecting C1 and C2, and so these two
variables are d-separated, and C1 ⊥⊥ C2.22

• There are two back-door paths connecting X and Y : X ←− C1 −→ Y
and X ←− C2 −→ C3 −→ Y . Similarly, there are two causal chains

21The “d” in d-separated and d-connected represents “d irectional.”
22Also see Exercise 26.5(a).
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Figure 26.10 A DAG with mediators, confounders, and colliders.

connecting X and Y : X −→ M1 −→ Y and X −→ M2 −→ M3 −→ Y ,
and so, for example, controlling for C1, C2, M1, and M2 is sufficient to
d-separate X and Y conditionally. That is, (Y ⊥⊥ X)| {C1, C2,M1,M2}.23

• As mentioned, C1 and C2 are d-separated. From the point of view of these
two variables X is a collider, and so if we control for X, C1 and C2 are
conditionally d-connected; it’s almost surely the case that C1 and C2 are
not independent controlling for X.24

26.6 DAGs With Unobserved Variables

In my opinion, perhaps the most important contribution of DAGs to data anal-
ysis is their ability to assist us in reasoning about potential confounders that
aren’t present in our observed data. Recall (from Sections 6.3 and 9.7) that
a key assumption in interpreting a regression causally is that the explanatory
variables in the regression are independent of (or, in linear regression, at least
uncorrelated with) the regression error—where the error represents the omitted
causes of the response. It is always possible in observational data that this
assumption fails in an unknown manner, but it is also possible that the assump-
tion fails in a known manner. That is, we may understand what (some of) the
omitted causes of Y are, and this understanding, cast in the form of a DAG,

23Also see Exercise 26.5(b).
24Also see Exercise 26.5(d).
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Figure 26.11 DAGs with an unobserved variable: (a) an unobserved confounder ω of the

relationship between X and Y ; (b) the effect of ω on X mediated by the observed

variable V ; (c) the effect of ω on X mediated by V and the effect of ω on Y
mediated by U .
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may help us decide whether the situation is hopeless or whether we can proceed
in a principled manner to estimate the effect of an observed cause X on Y .

Figure 26.11 displays three simple DAGs, each including an unobserved vari-
able (also called a latent variable) ω—adopting the general convention in the text
of using Greek letters to denote unobserved quantities, including unobserved
random variables. Figure 26.11(a) is very much like Figure 26.2(a) (page 5), ex-
cept that the observed confounder W is replaced by the unobserved confounder
ω; I assume here that the variable ω (ambition) either isn’t present in our data
or that we don’t know how to measure it.

As I have explained, to estimate the effect of X on Y in Figure 26.2(a)
(page 5), we should control statistically for W , regressing Y on X and W . We
can’t do that for the DAG in Figure 26.11(a) because ω isn’t available to us.
This is an unhappy situation, but at least the DAG makes it clear why we can’t
legitimately estimate the effect of X on Y , and may suggest what we need to
do—perhaps by collecting additional data, but not necessarily observing ω—to
obtain an unbiased estimator.

Examine, for example, the DAG in Figure 26.11(b). The observed variable
V wholly mediates the effect of the confounder ω on X, and thus controlling for
V blocks the back-door path in the DAG and is sufficient to obtain an unbiased
estimator of the effect of X on Y . If we believe the DAG, then we don’t have
to observe ω to discount its confounding influence.

A similar, if slightly more elaborate, example appears in Figure 26.11(c),
where V wholly mediates the effect of ω on X and U wholly mediates the effect
of ω on Y . To block the back-door path between X and Y through ω, we can
control for V , or for U , or for both V and U . Any of these choices would produce
an unbiased estimator of the effect of X on Y , but the analysis in the preceding
section suggests that we would obtain the most precise estimator by controlling
for U alone.

An important contribution of DAGs is that they can help us to understand the role
of unobserved (latent) variables in causal inference. In certain cases, we may be
able to close back-door paths that include unobserved confounders by controlling
for observed variables along these paths.

26.6.1 Instrumental Variables*
Recall that if we wish to construe a least-squares regression causally (see Sec-
tions 6.3 and 9.7), the explanatory variables in the regression must be indepen-
dent of (or, in a linear regression, at least uncorrelated with) the regression error.
As described in Section 9.8, instrumental-variables estimation is a method for
estimating a linear regression consistently when one or more explanatory vari-
ables are related to the error. DAGs can assist in the identification of potential
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Figure 26.12 DAG with an instrumental variable Z to estimate the effect of X on Y when

there’s an unobserved confounder ω.

instrumental variables in applications. Although I won’t pursue the point here,
the use of instrumental variables to obtain unbiased estimators of effects is more
general than linear regression.

I previously employed the following example to illustrate instrumental-variables
estimation:25 Imagine an experiment to determine the effect of private-school
versus public-school attendance on students’ academic achievement, in which
students are assigned at random to receive vouchers to attend private schools.
If all students who receive vouchers use them to attend private schools and
all who don’t receive vouchers attend public schools, then type of school at-
tended would be unrelated, at least in expectation, to all potential confounding
causes of academic achievement. Suppose, however, that compliance is less than
complete, and that some students without vouchers are sent by their families
to private schools, and some who receive vouchers nevertheless attend public
schools. Then it’s possible, and even likely, that self-selection induces a rela-
tionship between type of school attended and the omitted causes of academic
achievement.

This situation is represented in the DAG in Figure 26.12, where one potential
latent confounder is identified: parents’ aspirations for their children, The DAG
makes it clear that parental aspirations (ω) is an unobserved spurious source
of association between type of school attended (X) and academic achievement
(Y ); moreover, receipt of a voucher (Z) is a cause of, and hence related to, type
of school attended, while, because vouchers are randomly assigned, receipt of a
voucher is unrelated to parental aspirations—satisfying the two criteria for an
instrumental variable.

25Earlier in this chapter (Section 26.4.3), I adapted this example to illustrate the use of
DAGs to explain selection bias.
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DAGs may help us to identify instrumental variables, as causally prior variables
that affect X but not Y directly and that are reasonably construed as unrelated to
the omitted (i.e. latent) causes of Y . Such instrumental variables make it possible
to estimate the effect of X on Y even when X is related to the regression error in
Y , such as when there are unobserved confounders creating back-door paths that
can’t be blocked by controlling for observed antecedent variables.

26.7 An Example: Blau and Duncan’s Basic Strat-
ification Model

As part of an extensive study of social and economic inequality in the United
States, Blau and Duncan (1967) developed what they termed “a basic strati-
fication model,” depicted in the path diagram in Figure 26.13(a).26 Blau and
Duncan fit their model to data from a 1962 U. S. sample survey of more than
20,000 men between the ages of 20 and 64.27

The model includes five observed variables:

• The respondent’s father’s education, which is scaled as follows: (0) no
school; (1) 1 to 4 years of elementary school; (2) 5 to 7 years of elementary
school; (3) 8 years of elementary school; (4) 1 to 3 years of high school; (5)
4 years of high school; (6) 1 to 3 years of college; (7) 4 years of college; and
(8) 1 or more years of post-graduate study. As Blau and Duncan note,
this scaling is nearly a linear function of years of education.28

• The respondent’s father’s socioeconomic status (“SES”) when the respon-
dent was 16 years old, which is a property of the father’s occupation. SES
scores ranged from 0 to 96.29

• The respondent’s education, using the same 0–8 scale as for father’s edu-
cation.

• The SES of the respondent’s first job after his education was complete.

• The respondent’s SES at the time of the survey.
26The path diagram in Figure 26.13(a) differs only trivially from Blau and Duncan’s Fig-

ure 5.1: For example, Blau and Duncan don’t give names to the error variables, which I
designate ε1, ε2, and ε3, and they show the estimated standardized regression coefficient for
each of the directed arrows in the model, along with the correlation between father’s education
and father’s SES, corresponding to the double-headed arrow in the path diagram.

27It’s telling that a book entitled The American Occupational Structure dealt entirely with
men. See Exercise 26.6 for more on Blau and Duncan’s data.

28For this last point, also see Exercise 26.6(a).
29Duncan (1961) pioneered the construction of socioeconomic-status scales. The SES scores

for occupations are either observed or predicted percentages of high ratings in a national
survey of occupational prestige; they therefore have a theoretical range of 0 to 100.
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Figure 26.13 Blau and Duncan’s basic stratification model: (a) as a path diagram; (b) in

slightly modified form as a DAG
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Because it is acyclic,30 Blau and Duncan’s path diagram could be construed
as a DAG (once we adopt a convention for the double-headed arrow, as explained
below), but it is given a slightly different, and more specific, interpretation:

1. There is an implied linear regression equation for each endogenous variable
in the model—that is, each variable in the path diagram to which one or
more directed arrows point. For example, for respondent’s education,

R’s Education = β0 + β1F’s Education + β2F’s SES + ε1

After standardizing the variables in the model, Blau and Duncan esti-
mated this and the other implied regression equations by linear least
squares, and so the intercept β0 was set to 0. Such standardized regression
coefficients in a path model are called path coefficients.31

2. Father’s education and father’s SES are treated as exogenous variables
in the model—that is, variables determined outside of the model. As a
consequence, no arrows point towards the exogenous variables, and the
exogenous variables are independent of the error variables in the model
(here, ε1, ε2, and ε3)

The double-headed arrow in the path diagram linking the two exogenous
variables is interpreted non-causally as a statistical association. That is,
the model is agnostic about whether father’s education causes father’s
SES, father’s SES causes father’s education, father’s SES and education
have one or more common prior causes, or any or all of these possibilities.

In contrast, a double-headed arrow in a DAG is conventionally taken to
imply a latent common prior cause (or causes), and so, for example, U ←→
V is equivalent to U ←− ω −→ V , where ω represents an unobserved prior
cause (or the aggregated unobserved prior causes) of U and V

Figure 26.13(b) redraws Blau and Duncan’s path diagram as a DAG. The
error variables in the model, ε1, ε2, and ε3, are independent of one-another and
affect only one observed variable each; as a consequence, the errors have no
implications for associations among the observed variables, and it’s unnecessary
to show them explicitly in the DAG, although it would be harmless to do so.32
As explained, I replaced the double-headed arrow linking father’s education and
father’s SES with an unobserved confounder ζ affecting both variables, but (as
Blau and Duncan would agree makes sense) I also specified a direct arrow from
father’s education to father’s SES.33 In contrast to Blau and Duncan’s path

30An acyclic path diagram is said to be recursive, which also implies that each error variable
in the diagram points only to one observed variable and that the errors are independent of
each other.

31One of Sewall Wright’s goals, from which the term “path analysis” derives, was to express
observed correlations as functions of path coefficients.

32Pearl et al. (2016), for example, routinely show latent error variables in DAGs.
33Because of the unobserved confounder, however, the effect of father’s education on father’s

SES isn’t estimable. For their reasoning in specifying the basic stratification model, see Blau
and Duncan (1967, Chap. 5).
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model, I also added an unobserved confounder η of respondent’s first-job SES
and 1962 SES, because it’s implausible that these two very similar variables
would not share unobserved causes.34

Imagine now that, guided by the DAG in Figure 26.13(b), we wish to esti-
mate the effect of father’s SES on respondent’s SES in 1962 (that is, intergener-
ational transmission of SES—the inverse of social mobility), and of respondent’s
education on respondent’s SES (that is, the contribution of education to status
attainment). How should we proceed?

• All of the back-door paths connecting father’s SES to respondent’s 1962
SES go through father’s education, and so it suffices to regress respon-
dent’s SES on father’s education and father’s SES to estimate the effect
of the latter. This would not be the case had I omitted the arrow from
father’s education to father’s SES: In the absence of that arrow, the ef-
fect of father’s SES on respondent’s SES wouldn’t be estimable because of
inability to block back-door paths through the unobserved confounder ζ.

• Similarly, all of the back-door paths connecting respondent’s education
to respondent’s 1962 SES go through father’s SES, and so to estimate
the effect of respondent’s education we can regress respondent’s SES on
father’s SES and respondent’s education. That it is sufficient to control
for father’s SES doesn’t in this case depend on the additional arrow from
father’s education to father’s SES.35

It is also interesting to examine the conditional statistical independencies
among the observed variables implied by the DAG for Blau and Duncan’s model.
There are two:

1. (respondent’s first-job SES ⊥⊥ father’s education) | (father’s SES and re-
spondent’s education )

2. (respondent’s 1962 SES ⊥⊥ father’s education) | (father’s SES and respon-
dent’s education)

These conditional independencies correspond to two arrows that could be added
to the DAG without violating its acyclic structure: arrows from father’s educa-
tion to respondent’s first job and to 1962 SES. The conditional independencies
also follow from the rules for conditional d-separation given in Section 26.5.

This observation suggests that the DAG for Blau and Duncan’s model con-
strains the data in a testable manner. If we regress respondent’s first-job and
1962 SES on father’s education, father’s SES, and respondent’s education, then
the coefficient of father’s education in each regression should be 0 within sam-
pling error.36 That’s not to say, however, that satisfying these constraints proves

34See Exercise 26.6(b).
35See Exercise 26.6(c) for the results of the regression of respondent’s 1962 SES on father’s

education and father’s SES, and the regression of respondent’s 1962 SES on father’s SES and
respondent’s education.

36See Exercise 26.6(d) for these regressions.
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that the causal structure of the DAG is correct. As I previously pointed out in
connection with Figures 26.2(a) (page 5) and 26.4(a) (page 8), it’s generally the
case that different, causally distinct, DAGs can be observationally equivalent
in that they imply the same conditional independencies. This would be true
for Blau and Duncan’s DAG, for example, were we nonsensically to reverse the
arrow from father’s education to father’s SES.

26.8 Potential Outcomes, Causal Inference, and
DAGs

Consider a simple randomized experiment in which half of n subjects are as-
signed to a treatment condition and half to a control condition, with the random
assignment encoded by the dummy variable Xi = 1 if subject i is in the treat-
ment group and Xi = 0 if subject i is in the control group. A response variable
Yi is subsequently measured for each subject, and we focus either on the condi-
tional distribution of the response given experimental condition, p[Y |(X = x)],
or on some property of the conditional distribution such as its mean µ|(X = x).

The potential outcomes (or counterfactual) approach to causal inference,
developed by Donald Rubin and his colleagues, initially in Rubin (1974),37 is
a framework for conceptualizing statistical causation in experimental and ob-
servational data. We imagine that each subject i in our simple experiment is
associated with two potential outcomes: y(1)i ≡ Yi|(Xi = 1) if the subject is
assigned to the experimental condition; and y(0)i ≡ Yi|(Xi = 0) if the subject is
assigned to the control condition. Here, as is common in explanations of Rubin’s
causal model, I’ve treated the potential outcomes for subject i as fixed values,
y
(1)
i and y

(0)
i , but, perhaps more realistically in most instances,38 we can also

think of them as random variables, Y (1)
i ≡ Yi|(Xi = 1) and Y (0)

i ≡ Yi|(Xi = 0).
In either case, the observed response Yi is random because of the random as-
signment of Xi. For simplicity, I’ll stick with the fixed values y(1)i and y(0)i for
the potential outcomes.

What Holland (1986) calls the “fundamental problem of causal inference” is
that we can’t observe both y

(1)
i and y

(0)
i for subject i, which prevents us from

directly measuring the effect of X on Y for subject i, defined as y(1)i − y(0)i .39

If we observe Yi = y
(1)
i for subject i, we don’t observe y(0)i , and vice-versa—

hence the use of the term “counterfactual” to characterize the potential-outcomes
approach. Half of the data for computing the individual-subject effects are
missing.

37Essentially the same approach was proposed much earlier by Jerzy Neyman, an important
contributor to the theory of statistical inference in the first half of the 20th Century; see
Neyman (1990) [1923].

38For example, Y (x)
i might include measurement error or an inherently random component.

39That is, in general we can’t observe both y(1)i and y(0)i at the same moment of time, and
so to observe both we have to make additional assumptions—for example, that if we observe
y
(1)
i and y(0)i sequentially, the first measurement doesn’t influence the second.
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The potential-outcomes approach requires that, prior to collecting data, all
subjects can be observed under both treatment and control, which is typically
interpreted to mean that the causeX is amenable to experimental manipulation,
at least in principle, even if the data are observational. Immutable or intrinsic
characteristics of subjects are consequently ruled out as causes.40

Because the individual effects y(1)i − y
(0)
i can’t be observed, let us focus

instead on their distribution over the n subjects in the study (or, alternatively,
a population of subjects from whom the n subjects in the study were drawn),
and, in particular on the average value of this difference, Ei

(
y
(1)
i − y

(0)
i

)
, where

Ei(·) denotes expectation over all subjects. This average is estimable because

Ei

(
y
(1)
i − y

(0)
i

)
= Ei

(
y
(1)
i

)
− Ei

(
y
(0)
i

)
= Ei[Yi|(Xi = 1)]− Ei[Yi|(Xi = 0)]

(26.2)

Ei[Yi|(Xi = 1)] can be estimated by the average Y -value for subjects in the
treatment condition, and Ei[Yi|(Xi = 0)] by the average Y -value for subjects in
the control condition. The second line of Equation 26.2 is justified because the
subjects in each treatment are a simple random sample of all of the subjects.
That would not generally be the case in the absence of randomization—for
example, if the subjects in the treatment condition were self-selected.

In the absence of random assignment, we must either justify Equation 26.2 by
arguing that the mechanism assigning subjects to treatments is effectively ran-
dom (a natural experiment), or produce an unbiased estimate of Ei

(
y
(1)
i − y

(0)
i

)
by conditioning on an antecedent variable (or variables), say Z, for which

Ei

(
y
(1)
i − y

(0)
i

)
= Ei[Yi|(Xi = 1, Zi = z)]− Ei[Yi|(Xi = 0, Zi = z)]

We can estimate the average effect of X on Y by averaging the values of Y for
X = 1 and X = 0 over all values z of Z and taking the difference in the two
averages—or by the regression of Y on X and Z.41 There is a large literature
in the potential outcomes tradition that addresses how to go about selecting
control variables and how to control for them.42

40What counts as an intrinsic characteristic of subjects is not as obvious as it may seem.
For example, Holland (1986, p. 946) cites race and gender as two intrinsic characteristics of
individuals that are not subject to experimental manipulation, but we can certainly imagine
performing experiments in which these characteristics are manipulated, as in photos attached
to job applications, or musical auditions with or without the ability of judges to see the
performers.

41If X interacts with Z in determining Y , we might prefer to estimate the interaction (i.e.,
the varying effect of X at specific values z of Z) rather than the main effect of X (its effect
averaged over values z of Z).

42In addition to the direct comparison of conditional means and multiple regression, other
strategies for controlling for confounders include matching and propensity scores: See the
recommended readings at the end of this chapter.



26.8. POTENTIAL OUTCOMES, CAUSAL INFERENCE, AND DAGS 31

(a)

U
family wealth

X
type of
primary
school

Y
education

(b)

U
family wealth

do(X)
type of
primary
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Y
education

Figure 26.14 (a) In observational data, the variable U is a confounder of the causal relationship

between X and Y ; (b) manipulating X directly, denoted by do(X), removes all

arrows pointing to X , in this case U −→ X , and so it is no longer necessary to

control for U to estimate the effect of X on Y .

The potential-outcomes (or counterfactual) framework for causal inference re-
quires that, prior to data collection, the value of the response variable Y for every
subject in a study can be observed with the explanatory variable X set to each
of its possible values. This requirement is equivalent to asserting that X can be
subject to experimental control, at least in principle, even if the data at hand are
observational.

When data are collected, however, only one value xi of the explanatory variable
and the associated value y(xi)

i = Yi|(X = xi) of the response are realized for each
subject i. The effect of X on Y for an individual subject, defined as differences in
the response Yi with X set to its distinct values (the potential outcomes y(x)i for
all x), is therefore unobservable—the fundamental problem of causal inference.

Attention consequently shifts to the distribution of the individual effects, or to
characteristics of this distribution—for example, the individual effects averaged
over subjects. Average effects are estimable in experimental data and may be
estimable in observational data if confounders can be controlled statistically.

How does all this relate to DAGs? Experimental control of X in a DAG can
be represented by the do operator , where we understand do(X = x) to mean
that X is set to the value x. More generally do(X) implies that X is under
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experimental control: do(X), therefore, erases all arrows in an observational
DAG that point to X because, in an experiment, X has no causes other than
direct manipulation.

An example appears in Figure 26.14, where panel (a) is an observational
DAG in which U confounds the effect of X on Y . I imagine here that X
represents the type of primary school an individual attends—public or private;
Y represents level of eventual completed education; and U represents family
wealth. To estimate the effect of X on Y from observational data, we must
therefore control for U to block the back-door path through U . In panel (b)
(admittedly unrealistically for this example), we exert experimental control over
X [i.e., do(X)], erasing the arrow U −→ X. We can now obtain an unbiased
estimate of the effect of X on Y by regressing Y on X alone.43

It is more common, however, to reason in reverse—that is, to start with
a DAG in which X is directly manipulated, at least hypothetically, and so
has no arrows pointing to it, and then to ask whether we can estimate the
(same) effect of X on Y from observational data by controlling for antecedent
variables, some of which point directly to X. That leads to the methods for
closing back-door paths described earlier in this chapter, and more generally to
Pearl’s do-calculus.44

In a DAG, direct experimental manipulation of X is represented by the do oper-
ator, do(X), which has the effect of removing all arrows that point directly to X
in the corresponding observational DAG. The observational DAG can help us to
decide whether and how to obtain an unbiased estimate equivalent to the effect of
do(X) by controlling for antecedent variables to close back-door paths linking X
and Y .

26.9 DAGs and Missing Data

Missing data in regression models are discussed in Chapter 20, and three types
of missing data (introduced by Donald Rubin, 197645) are described in Sec-
tion 20.1: data that are missing completely at random (MCAR), missing at

43It may still be advantageous to include U in the regression equation as a covariate, to
reduce the error variance and thus obtain a more precise estimate of the coefficient of X, but
the key point is that ignoring U doesn’t bias the estimate of the effect of X.

44The details of do-calculus, which is a coherent set of rules for estimating causal effects in
observational DAGs, are too complex to develop here, but see the recommended reading at
the end of the chapter, in particular Pearl (2009), Pearl and Mackenzie (2018), and Morgan
and Winship (2014).

45It is interesting, and probably not coincidental, that Rubin made fundamental contri-
butions to two topics discussed in this chapter: the potential-outcomes approach to causal
inference (discussed in Section 26.8) and the treatment of missing data.
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random (MAR), or missing not at random (MNAR). To recapitulate briefly,
missing data are MCAR if the observed data are equivalent to a simple random
sample from the complete data set; MAR if missingness (i.e., the probability
that a value is missing) is unrelated to the missing values themselves given
the observed data; and MNAR if missingness depends on the missing values
after accounting for the information in the observed data. These distinctions
are important for how data with missing values should be analyzed to obtain
consistent estimators of regression coefficients and other parameters.

Though a centrally important advance in principled methods for dealing
with missing data, Rubin’s categorization is admittedly opaque. Perhaps more
importantly, it is difficult to know in an application whether reasonable as-
sumptions about how missing data may have been generated correspond to the
various types of missing data—for example, whether it is justified on the basis
of these assumptions to treat missing data as MAR. With a small adjustment
to Rubin’s definition of MAR, DAGs can help to determine whether data are
MCAR, MAR, or MNAR, and, in some circumstances, even how to obtain con-
sistent estimators of parameters of interest when missing data are MNAR.

The discussion of DAGs for missing data in this section relies heavily on a
review paper by Mohan and Pearl (2021). As is typical in this chapter, the
treatment here is abbreviated and simplified, and is meant principally to clarify
fundamental ideas.

With the exception of panel (a), where data are complete, the DAGs in
Figure 26.15 represent examples of different mechanisms for generating miss-
ing data, corresponding (roughly) to the distinction among MCAR, MAR, and
MNAR. The following conventions are used in these DAGs, termed missingness
graphs (or m-graphs) by Mohan and Pearl (2021):46

• The completely observed response variable is denoted Y .

• Some of the values of Y may not be available to the researcher. In that
case, the observed response Y ∗ includes missing values. In panels (b),
(c), and (d), only the response variable is subject to missing data, and
the explanatory variables (X and W ) are completely observed. M-graphs
can also be used to analyze situations in which several—indeed, all—
variables are subject to missing data, but examples in which missing data
are restricted to the response are particularly simple, which is the reason
for using them here.

• The missingness indicator variable M is coded 1 for case i if the value
of Yi is missing and 0 if it is observed. Thus, Y ∗i = Yi if Mi = 0, and
Y ∗i = missing if Mi = 1. The observed response Y ∗ has Y and M as its
direct “causes.” If more than one variable were subject to missing data,
then there would be a distinct M indicator variable for each (e.g., MX for
X, MW for W , etc.).

46My conventions for labeling variables in m-graphs differ from those in Mohan and Pearl
(2021).
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Figure 26.15 Illustrative missingness graphs (m-graphs) representing various missing-data

patterns: (a) complete data set; (b) missing data that are missing completely at

random (MCAR); missing data that are missing at random (v-MAR); (d) missing

data that are missing not at random (MNAR).
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• Other variables (X and W in these examples) are interpreted in the usual
manner for DAGs.

As mentioned, the DAG in Figure 26.15(a) represents complete data on X,
W , and V . From earlier material in this chapter, we know that we can estimate
the effect of X on Y (for which W is a mediator) from the regression of Y on
X alone, and the effect of W on Y (for which X is a confounder) from the
regression of Y on both W and X.

The DAG in panel (b) of Figure 26.15 is similar to that in panel (a), except
that the observed response Y ∗ is incomplete. We can see from the structure of
the DAG, however, that missingness (i.e.,M) is unrelated to all of X,W , and Y
(i.e., the completely observed response), and so missing data in Y ∗ are MCAR.
We could, for example, estimate the effects of X and W on Y by complete-case
analysis (see Section 20.2), performing regressions as for the DAG in panel (a).

More generally, imagine that some of the variables Vc in a DAG are com-
pletely observed, that others Vm contain some missing values in the observed
data (but are conceptualized as including the unobserved missing values), and
that the missingness indicators are in M. There may also be latent variables Ω,
which, of course, aren’t observed, and V∗ contains the observed data, including
missing values, corresponding to the variables in Vm. Mohan and Pearl (2021)
show that missing data are MCAR if (in my notation) {Vc,Vm,Ω} ⊥⊥ M. In
the DAG in Figure 26.15(b), Vc = {X,W}, Vm = {Y }, M = {M}, V∗ = {Y ∗},
and Ω is empty (i.e., there are no latent variables). As I explained, it’s apparent
from the DAG that {X,W, Y } ⊥⊥M , and so missing data are MCAR.

Mohan and Pearl (2021) define a slightly stronger condition than MAR,
which they term v-MAR (missing at random defined in terms of variables):
Missing data are v-MAR if ({Vm,Ω} ⊥⊥ M)|Vc, that is if the variables with
missing data and the latent variables in the DAG are independent of missingness
given the fully observed variables. V-MAR implies MAR, but not vice-versa.
Nevertheless, it’s much easier to reason substantively about v-MAR than more
abstractly about MAR, and so v-MAR is more likely to be helpful in applica-
tions.

In the DAG in Figure 26.15(c), missingnessM depends on the fully observed
variables X and W , but given X and W , the complete response Y is indepen-
dent of M (that is, (Y ⊥⊥ M)|{X,W}). In this example, therefore, missing
data are v-MAR. Because there are missing data only in the response, we can
again consistently estimate the effects of interest by complete-case regressions.
More generally, we could use methods, such as multiple imputation, that are
appropriate for missing data that are MAR.

The DAG in Figure 26.15(d) represents a situation in which missing data are
MNAR, because missingness M in the observed response Y ∗ depends directly
on the complete response variable Y , even if we condition on the completely
observed variables X and W . In this case, we can’t consistently estimate the
effects of X and W on Y without introducing additional information.

More generally, however, Mohan and Pearl (2021) explain how in certain
circumstances it’s possible to obtain consistent estimators when missing data
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are MNAR. Even when missing data are v-MAR, an m-graph may suggest
specific consistent estimators of effects of interest that are more efficient than
generic estimators such as those obtained using multiple imputation. Mohan
and Pearl also describe how to test for MCAR and v-MAR in m-graphs that
imply these conditions.

The variables in a missingness DAG (or m-graph) are divided into several sets:
completely observed variables Vc; variables Vm some of whose values are missing
in the observed data; latent variables Ω; missingness indicator variables M, one
for each variable in Vm; and observed variables V∗ including missing data and
corresponding to the variables in Vm.

Missing data are MCAR if {Vc,Vm,Ω} ⊥⊥ M, and are v-MAR if ({Vm,Ω} ⊥⊥
M)|Vc. V-MAR is a slightly stronger condition than Rubin’s MAR (so v-MAR
implies MAR), but, because of its m-graph interpretation, v-MAR is easier to
justify in applications.

26.10 Concluding Remarks about DAGs and Causal
Inference

Most research in the social sciences is based on observational data, and I believe
that most social-science researchers who use observational data are interested in
drawing causal inferences—whether or not they explicitly acknowledge it—and
not merely in discovering statistical associations or predicting future observa-
tions. I’ve argued in this chapter that DAGs are a potentially useful conceptual
device for deciding whether it’s possible to obtain estimates that can be given
a causal interpretation, and, if so, how to go about deciding which antecedent
variables to control.

DAGs are also useful for clarifying which variables shouldn’t be controlled
statistically, such as mediating variables and consequences of the response, which
can be colliders. Both mediators and consequences may be very useful in pure
prediction problems, but, as DAGs make clear, they can wreak havoc with causal
inferences,47 as can using “statistical significance” as a criterion to eliminate
weakly predictive antecedent variables as controls: Such antecedent variables
may have small or even absent direct effects (their effects may be entirely indirect
through X), yet failing to control them can still open back-door paths that bias
the estimate of the effect of X on Y .

Perhaps it’s stating the obvious to say that using a DAG to support causal
inferences from observational data rests on the truth of the causal structure

47Thus, model-selection methods that focus on prediction (such as those described in Sec-
tion 22.1) are nearly guaranteed to produce causally misleading models.
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represented in the DAG. If the DAG is wrong, then causal assertions based
on it may be wrong as well. Although it’s important to recognize this fact, the
conditional nature of causal inference based on DAGs merely reflects the familiar
limitation of observational data: There can be unobserved confounders of which
we are unaware, and so the antecedent variables that we control statistically
may be insufficient for blocking unanticipated back-door paths. This is why it’s
important to think about potential confounders, even if they are unobserved or
unobservable.

Despite their utility, one can easily get in trouble with DAGs when they are
adjusted to permit the causal inferences that the researcher wants to make. That
is, there is a temptation to redraw a DAG if, on a first attempt, it turns out that
there are unobserved confounders creating back-door paths that can’t be blocked
by controlling for observed antecedent variables, or where an initial graph isn’t
acyclic. In my experience, this kind of respecification is common in applications
of structural-equation models, where researchers adjust their models to ensure
that they are identified (i.e., estimable). This kind of respecification may not
represent deliberate dishonesty but it nevertheless is self-deceptive and self-
defeating.

DAGs help us reason about how to estimate causal effects in observational data,
including in situations where some confounders are unmeasured or even unmeasur-
able. The validity of the conclusions and procedures for causal inference that we
derive from a DAG depend on the validity of its causal structure. Although some
causal assumptions in a DAG may be testable, it is always true that causal con-
clusions also depend on untestable—that is, extra-statistical—assumptions, which
must therefore be justified on substantive grounds.

Summary
• A graph is a labeled set of nodes (points) connected by edges (line seg-

ments). Graphs may be undirected or directed, in which case the edges
are represented as single-headed arrows. The node at the head of each
arrow in a directed graph is the parent node and that at the tail is the
child node.
A path through a graph between two nodes is a sequence of consecutive
edges connecting the nodes, and a directed path is a path all of whose
arrows point in the same direction. The initial node of a directed path
is an ancestor of the terminal node, which is a descendant of the initial
node. A directed graph is acyclic if it has no reciprocal paths or loops.

• Directed acyclic graphs (or DAGs) represent causal relationships among
variables, where the variables are the nodes of the graph, and arrows
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connecting the variables represent direct effects, with the direct cause at
the tail of an arrow and the effect at the tip. To say that DAGs are
acyclic implies that causation is unidirectional, with no reciprocal arrows
or feedback loops.

• A confounder creates a back-door path connecting a cause X and effect
Y , which in turn generates spurious (i.e., non-causal) association between
these two variables. We can estimate the effect of X on Y by controlling
statistically for the confounder. The path X ←− W −→ Y is called a
causal fork.

• A mediator is a variable that intervenes between a cause X and effect Y .
We should not control statistically for a mediator if we want to estimate
the effect of X on Y . The path X −→ W −→ Y is called a causal chain.
Confounders and mediators can’t be distinguished solely on statistical
grounds.

• To obtain an unbiased estimator of the effect of X on Y we must close (i.e.,
block) all of the back-door paths connecting the two variables in the DAG
(the back-door criterion). Closing all back-door paths does not in general
require that we control for all variables in the DAG that are causally prior
to X and Y . It’s generally advantageous to control for the antecedent
variable or variables that are sufficient to close all back-door paths and
that, in doing so, produce the most precise estimate of the effect of X on
Y . When we have a choice, we therefore prefer to control for antecedent
variables that are close to Y and remote from X.

• Colliders are variables that block sources of non-causal association between
X and Y . Controlling for a collider opens a non-causal path between the
two focal variables, biasing the estimated effect of X and Y .

• Controlling for descendants of both X and Y or of Y alone biases the
estimate of the effect of X on Y , while controlling for descendants of
X alone makes the estimate of the effect of X less precise. We should
therefore avoid controlling for descendants of the focal causal variables.

• Selection bias in estimating the effect of X on Y can be understood as
controlling for a collider, in which we examine the partial relationship
between X and Y within one category of the collider—that is, for self-
selected subjects.

• An important contribution of DAGs is that they can help us to understand
the role of unobserved (latent) variables in causal inference. In certain
cases, we may be able to close back-door paths that include unobserved
confounders by controlling for observed variables along these paths.

• DAGs may help us to identify instrumental variables, as causally prior vari-
ables that affect X but not Y directly and that are reasonably construed
as unrelated to the omitted (i.e. latent) causes of Y . Such instrumental
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variables make it possible to estimate the effect of X on Y even when X
is related to the regression error in Y , such as when there are unobserved
confounders creating back-door paths that can’t be blocked by controlling
for observed antecedent variables.

• The potential-outcomes (or counterfactual) framework for causal inference
requires that, prior to data collection, the value of the response variable
Y for every subject in a study can be observed with the explanatory
variable X set to each of its possible values. This requirement is equivalent
to asserting that X can be subject to experimental control, at least in
principle, even if the data at hand are observational.

When data are collected, however, only one value xi of the explanatory
variable and the associated value y(xi)

i = Yi|(X = xi) of the response
are realized for each subject i. The effect of X on Y for an individual
subject, defined as differences in the response Yi with X set to its distinct
values (the potential outcomes y(x)i for all x), is therefore unobservable—
the fundamental problem of causal inference.

Attention consequently shifts to the distribution of the individual effects,
or to characteristics of this distribution—for example, the individual ef-
fects averaged over subjects. Average effects are estimable in experimental
data and may be estimable in observational data if confounders can be
controlled statistically.

• In a DAG, direct experimental manipulation of X is represented by the
do operator, do(X), which has the effect of removing all arrows that point
directly to X in the corresponding observational DAG. The observational
DAG can help us to decide whether and how to obtain an unbiased esti-
mate equivalent to the effect of do(X) by controlling for antecedent vari-
ables to close back-door paths linking X and Y .

• The variables in a missingness DAG (or m-graph) are divided into several
sets: completely observed variables Vc; variables Vm some of whose values
are missing in the observed data; latent variables Ω; missingness indicator
variables M, one for each variable in Vm; and observed variables V∗

including missing data and corresponding to the variables in Vm.

Missing data are MCAR if {Vc,Vm,Ω} ⊥⊥M, and are v-MAR if ({Vm,Ω} ⊥⊥
M)|Vc. V-MAR is a slightly stronger condition than Rubin’s MAR (so
v-MAR implies MAR), but, because of its m-graph interpretation, v-MAR
is easier to justify in applications.

• DAGs help us reason about how to estimate causal effects in observa-
tional data, including in situations where some confounders are unmea-
sured or even unmeasurable. The validity of the conclusions and pro-
cedures for causal inference that we derive from a DAG depend on the
validity of its causal structure. Although some causal assumptions in a
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DAG may be testable, it is always true that causal conclusions also de-
pend on untestable—that is, extra-statistical—assumptions, which must
therefore be justified on substantive grounds.

Exercises

Exercise 26.1. How would you go about blocking the back-door paths to esti-
mate the effect of X on Y in the DAG in Figure 26.5(b) (on page 10)? Explain
your reasoning.48

Exercise 26.2. Add an arrow from race (V ) to family wealth (W ) to the DAG
in Figure 26.6(b) (page 13). How, if at all, does that modify the status of U as a
collider? What is the consequence of controlling statistically for V in estimating
the effect of X on Y ?

Exercise 26.3.

(a) Reproduce the illustrative collider simulation reported in Table 26.1 (on
page 14), adding the model that regresses Y on X and W . Is anything
learned from this additional regression beyond the conclusions already
drawn from the models in Table 26.1?

(b) Focusing now on models 1, 2, 3, and 5 in the simulation, draw the added-
variable plot (AV plot) for X in each model. Do these plots help you
visualize the properties of the estimators BX of βX = 1 for these models?

Exercise 26.4.

(a) Referring to the DAG in Figure 26.8 (on page 17), generate n = 10, 000
independent observations on X, Y , the collider U , and the various de-
scendants of these variables, W , V , and T , according to the following
scheme:

X ∼ N(0, 1)

Y ∼ N(X, 1)

U ∼ N(X + Y, 1)

W ∼ N(U, 1)

V ∼ N(X, 1)

T ∼ N(Y, 1)

Then regress Y on each of the follow (sets of) variables: (1) X; (2) X
and U ; (3) X and W ; (4) X and V ; and (5) X and T . Examine the

48Optionally, for this and other exercises, use daggity to check you work. You can access
daggity via its web interface or as an R package: See http://www.dagitty.net/.
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coefficient of X, its standard error, and the residual standard error from
each of these regressions. What do you conclude about the bias or unbias
and relative efficiency of the various estimates of the effect of X on Y ?
Do your conclusions square with those stated in the text.

(b) Now reverse the causal arrow between W and U , obtaining

W ′ ∼ N(0, 1)

U ′ ∼ N(X + Y +W ′, 1)

Fit additional regressions of Y on X and U ′ and on X and W ′. What
do you conclude?

Exercise 26.5. Refer to the DAG in Figure 26.10 (page 21):

(a) Are there any pairs of variables other than C1 and C2 that are d-
separated? If so, which one(s)?

(b) Are there any sets of variables other than {C1, C2,M1,M2} that condi-
tionally d-separate X and Y ? If so, which set(s)?

(c) There are many other pairs of variables in this DAG that can be rendered
conditionally independent by controlling for particular sets of variables.
Can you identify three such cases? Alternatively, use appropriate soft-
ware to identify all conditional independencies that can be derived from
the DAG.

(d) As I explained, the variables C1 and C2 are d-connected conditioning
on X, even though they are unconditionally d-separated. Can you find
another variable or other variables that render C1 and C2 conditionally d-
connected? Recalling part (a) of this exercise, can you find more pairs of
d-separated variables that can be rendered d-connected by conditioning
on another variable or other variables?

Exercise 26.6. The data for Blau and Duncan’s basic stratification model are
in the file BlauDuncan.txt, which is available on the website for the text. The
data file includes the five variables in Blau and Duncan’s model, along with
the respondents’ age and race. There are some missing values in the Blau and
Duncan data, denoted by NA. See Blau et al. (1983, 1994) for details about the
original data set from which the data used here were drawn.

(a) As mentioned, Blau and Duncan used a 0–8 coding for nine levels of
education. Recode education so that its values reflect the mid-points, in
years, of the education categories. You’ll have to pick a reasonable value
for the last, open-ended category of one or more years of post-graduate



42 CHAPTER 26. CAUSAL INFERENCES: DAGS

education. Then check the correlation between education and education
in years, both for respondents and for their fathers. Will it matter which
version of education is used?

(b) What are the consequences for causal inference, if any, of adding the
unobserved variable η to the DAG for Blau and Duncan’s basic stratifi-
cation model in Figure 26.13(b) (on page 26)? (Hint : How might one go
about estimating the effect of first-job SES on 1962 SES?)

(c) To estimate the effects of father’s SES and of respondent’s education on
respondent’s SES, perform the regression of respondent’s 1962 SES on
father’s education and father’s SES, and the regression of respondent’s
1962 SES on father’s SES and respondent’s education. What do you
conclude from these regressions? Are there other ways to obtain unbiased
estimates of the effects of father’s SES and respondent’s education? If
so, which estimates would you prefer?

(d) Test the implied independencies in the DAG representing Blau and Dun-
can’s basic stratification model by regressing each of respondent’s first-
job and 1962 SES on father’s education, father’s SES, and respondent’s
education.

(e) Blau and Duncan estimated their basic stratification model for standard-
ized variables, obtaining the following coefficient estimates (and residual
standard errors, SE):

̂R’s Education = 0.310× F’s Education + 0.279× F’s SES,SE = 0.859

̂R’s 1st Job SES = 0.224× F’s SES + 0.440× R’s Education,SE = 0.818

̂R’s 1962 SES = 0.115× F’s SES + 0.394× R’s Education
+ 0.281× R’s 1st Job SES,SE = 0.753

In addition, they reported the correlation between father’s education and
father’s SES (the two exogenous variables in the original path model) as
r = .516.

Blau and Duncan’s analysis of the data used sampling weights meant
to match the sample to the U. S. population, so your estimates can’t be
expected to reproduce their results exactly, but are they close?.

(f) * I included the sampling weight variable in the Blau and Duncan data
file. Using the sampling weights, try to recover Blau and Duncan’s esti-
mates (within rounding error). Are you successful?

Exercise 26.7. Section 20.4.4 develops an example in which, using data re-
ported by the United Nations, national infant mortality rates are regressed on
gross domestic product per capita, the average number of years of education
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for women, and the percentage of married women practicing contraception in
the countries. There are missing values in each of these variables, and multi-
ple imputation is employed to obtain estimated regression coefficients. Recall
that multiple imputation of missing values is appropriate when missing data are
MCAR or MAR. I also report the results of a complete-case analysis, which is
appropriate when missing data are MCAR.49

(a) The DAG in Figure 26.16(a) is a proposed m-graph for the variables
in the United Nations regression.50 Do you find the proposed causal
structure plausible? If not, how might it be improved? Assuming that
the m-graph is reasonable, does it imply that missing data are MCAR,
v-MAR, or MNAR? Based on this m-graph, how might you go about
estimating the regression of infant mortality on the other variables in
the data set?

(b) The DAG in Figure 26.16(b) proposes an alternative structure for the
missing data in the infant-morality data set by introducing a latent vari-
able ω that affects all four missingness indicators. Is this structure more
plausible that in Figure 26.16(a)? What are the implications for estima-
tion of adopting the alternative m-graph?

Recommended Reading

• Pearl (2009) is a detailed, and at times highly technical, exposition of the
role of directed acyclic graphs in causal inference by the principal contrib-
utor to the subject. Pearl and Mackenzie (2018) is a much gentler, yet
still extensive, introduction to the same topic. Pearl et al. (2016) is a con-
siderably briefer, slightly more sophisticated, yet still accessible treatment
of causal DAGs, and is a good place to start reading about the subject.
Pearl’s approach to causality emphasizes the conditional probability dis-
tribution of the response variable rather than common regression models,
and so is more general than the approach in this chapter.

• Holland (1986) is a clear and accessible description of the potential-outcomes
approach to causal inference, which the author terms “Rubin’s causal
model.”

• The potential-outcomes and DAG approaches to causal inference devel-
oped largely separately, but Morgan and Winship (2014) lucidly describe
both at length and explain the relationship between the two. I reviewed
the somewhat less difficult—but also less complete—first edition of the
book in Fox (2008).

49The data for the example are on the website for the text, in the file UnitedNations.txt.
50In the least-squares regressions reported in Section 20.4.4, both infant mortality and GDP

are log-transformed. That’s not relevant to the DAG, however, which, recall is nonparametric.
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Figure 26.16 Alternative m-graphs for the infant-mortality data set.
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• Mohan and Pearl (2021) present an extensive review of the application of
DAGs to missing-data problems.
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