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Chapter 25

Bayesian Estimation of
Regression Models

There has been a recent proliferation of applications of Bayesian statistical in-
ference in the social sciences and more generally. Progress in applied Bayesian
statistics has several sources, including the development, dating to the 1950s,
of methods for sampling from complex probability distributions that defy an-
alytic solutions (see Section 25.2 on Markov-chain Monte-Carlo simulation);
great advances in the speed and memory capacity of computing hardware; and
the evolution of improved computational algorithms and statistical software to
render Bayesian inference flexible, convenient, and practical.

This chapter develops Bayesian statistical inference and illustrates its ap-
plication to a variety of regression models, including linear models, generalized
linear models, and mixed-effects models. With a couple of exceptions (Sec-
tion 20.4 on Bayesian multiple imputation of missing data, and some material
in Chapter 22 on model selection and model averaging), Bayesian ideas are essen-
tially absent from preceding chapters, where statistical inference in conducted
via “classical frequentist” parameter estimation, hypothesis tests, confidence in-
tervals, and confidence regions, which are assumed to be familiar from a basic
introduction to statistics. I don’t assume, however, that Bayesian statistical
inference is familiar, and so I introduce the topic here from first principles.

25.1 Introduction to Bayesian Statistical Infer-
ence

This section introduces Bayesian statistical inference as an alternative to classi-
cal frequentist methods. The treatment is brief, presenting and illustrating the
principal ideas of Bayesian inference but not developing the topic in detail.1

1Nevertheless, this section substantially expands the introduction to Bayesian inference in
Section D.7 of the on-line Appendix to the book.

1



2 CHAPTER 25. BAYESIAN ESTIMATION OF REGRESSION MODELS

25.1.1 Bayes’s Theorem
Recall (from Section D.1 of on-line Appendix D on probability and estimation2)
the definition of conditional probability : The probability of an event A given
that another event B is known to have occurred is

Pr(A|B) =
Pr(A ∩B)

Pr(B)
(25.1)

where Pr(A ∩ B) is the joint probability that both A and B occur, and Pr(B)
is the marginal or unconditional probability of B. Likewise, the conditional
probability of B given A is

Pr(B|A) =
Pr(A ∩B)

Pr(A)
(25.2)

Solving Equation 25.2 for the joint probability of A and B produces

Pr(A ∩B) = Pr(B|A) Pr(A)

and substituting this result into Equation 25.1 yields Bayes’s theorem:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
(25.3)

Bayes’s theorem is named after its discoverer, the Reverend Thomas Bayes, an
18th-century English mathematician.

Bayesian statistical inference is based on the following interpretation of
Equation 25.3: Let A represent some uncertain proposition (a “hypothesis”)
whose truth or falsity we wish to establish—for example, the proposition that a
parameter is equal to a particular value. Let B represent observed data that are
relevant to the truth of the proposition. We interpret the unconditional prob-
ability Pr(A), called the prior probability of A, as our strength of belief in the
truth of A prior to collecting data, and Pr(B|A) as the probability of obtaining
the observed data assuming the truth of A—that is, the likelihood of the data
given A (see on-line Appendix Section D.6.1). The unconditional probability of
the data B is3

Pr(B) = Pr(B|A) Pr(A) + Pr(B|A) Pr(A)

where A is the event not-A (the complement of A). Then Pr(A|B), given by
Equation 25.3 and called the posterior probability of A, represents our revised
strength of belief in A in light of the data B.

2Indeed, this would be a good time to review Appendix D!
3This is an application of the law of total probability: Given an event B and a set of k

disjoint events A1, . . . , Ak for which
∑k
i=1 Pr(Ai) = 1 (i.e., the events Ai partition the sample

space S),

Pr(B) =
k∑
i=1

Pr(B|Ai) Pr(Ai)

In the current context, S = A ∪A, that is, the sample space is the union of A and A.
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Bayesian inference is therefore a rational procedure for updating one’s be-
liefs on the basis of evidence. This subjectivist interpretation of probabilities
as relative strength of belief contrasts with the objective or frequentist interpre-
tation of probabilities as long-run proportions. Bayes’s theorem follows from
elementary probability theory whether or not one accepts its subjectivist inter-
pretation, but it is the latter that gives rise to common procedures of Bayesian
statistical inference.4

Named after the Reverend Thomas Bayes, an 18th-century English mathemati-
cian, Bayes’s theorem, which follows from elementary probability theory, states
that for events A and B,

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

where Pr(B) = Pr(B|A) Pr(A) + Pr(B|A) Pr(A) is the unconditional probability
of B (and A is the event not-A).
Bayesian statistical inference is based on the following interpretation of Bayes’s
theorem:

• Let A represent an uncertain proposition (a “hypothesis”), and let B rep-
resent observed data that are relevant to the truth of the proposition.

• Pr(A) is the prior probability of A, our strength of belief in A prior to
collecting data.

• Pr(B|A) is the probability of obtaining the observed data assuming the
truth of A—the likelihood of the data given A.

• Pr(A|B), the posterior probability of A, represents our revised strength of
belief in A in light of the data B.

Bayesian inference is therefore a rational procedure for updating one’s beliefs on
the basis of evidence.

An Application of Bayes’s Theorem

I conclude this section with a simple application of Bayes’s theorem that I
present as an exercise for the reader,5 an example that nicely reinforces the

4The identification of “classical” statistical inference with the frequentist interpretation of
probability and of Bayesian inference with subjective probability is a simplification that glosses
over differences in both camps. Such subtleties are well beyond the scope of this presentation,
and the shorthand—Bayesian inference versus classical or frequentist inference—is convenient.

5See Exercise 25.1.
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point that Bayes’s theorem is just a consequence of basic probability theory.
The application is well known, but most people find the result surprising (and
it is topical as I write this during the COVID-19 pandemic):

• Suppose that 10% of the population of a country have been infected by
a disease-causing virus and have developed antibodies to it. Let A repre-
sent the event that a person selected at random from the population has
antibodies to the virus, so Pr(A) = .1 and Pr(A) = .9.

• Imagine that a test for antibodies has been developed that never produces
a false negative. Let P represent the event that a person tests positive
for antibodies. The conditional probability that a person with antibodies
correctly tests positive, called the sensitivity of the test, is then Pr(P |A) =
1.

• Imagine further that the test has a false positive rate of 10%—that is, 10%
of people who don’t have antibodies to the virus nevertheless test positive
(perhaps because they’ve been infected by a similar virus). The condi-
tional probability that a person who doesn’t have antibodies incorrectly
tests positive is therefore Pr(P |A) = .1.6

• Imagine, finally, that you test positive. What is the probability that you
actually have antibodies to the virus—that is, what is Pr(A|P )?7 [Hint:
Pr(A|P ) is much smaller than Pr(P |A) = 1.]

25.1.2 A Preliminary Example of Bayesian Inference

Consider the following simple (if contrived) situation: Suppose that you are
given a gift of two “biased” coins, one of which produces heads with probability
Pr(H) = .3 and the other with Pr(H) = .8. Each of these coins comes in a
box marked with its bias, but you carelessly misplace the boxes and put the
coins in a drawer; a year later, you forget which coin is which. To try to
distinguish the coins, you pick one arbitrarily and flip it 10 times, obtaining the
data HHTHHHTTHH —that is, a particular sequence of 7 heads and 3 tails.
(These are the “data” used in a preliminary example of maximum-likelihood
estimation in on-line Appendix Section D.6.1.)

Let A represent the event that the selected coin has Pr(H) = .3; then A is
the event that the coin has Pr(H) = .8. Under these circumstances, it seems

6The probability that a person who doesn’t have antibodies correctly tests negative, called
the specificity of the test, is Pr(P |A) = 1 − .1 = .9, but this probability isn’t needed for the
problem.

7A strict frequentist would object to referring to the probability that a specific individual,
like you, has antibodies to the virus because, after all, either you have antibodies or you
don’t. Pr(A|P ) is therefore a subjective probability, reflecting your ignorance of the true
state of affairs. Pr(A|P ) can be given an objective frequentist interpretation as the long-
run proportion (i.e., the relative frequency) of individuals testing positive who are actually
positive.
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reasonable to take as prior probabilities Pr(A) = Pr(A) = .5. Calling the data
B, the likelihood of the data under A and A is

Pr(B|A) = .37(1− .3)3 = .0000750

Pr(B|A) = .87(1− .8)3 = .0016777

As is typically the case, the likelihood of the observed data is small in both
cases, but the data are much more likely under A than under A.

Using Bayes’s theorem (Equation 25.3), you find the posterior probabilities

Pr(A|B) =
.0000750× .5

.0000750× .5 + .0016777× .5
= .0428

Pr(A|B) =
.0016777× .5

.0000750× .5 + .0016777× .5
= .9572

suggesting that it is much more probable that the selected coin has Pr(H) = .8
than Pr(H) = .3.

25.1.3 Extending Bayes’s Theorem
Bayes’s theorem extends readily to situations in which there are more than two
hypothesesA andA: Let the various hypotheses be represented byH1, H2, . . . ,Hk,
with prior probabilities Pr(Hi), i = 1, . . . , k, that sum to 1;8 and let D repre-
sent the observed data, with likelihood Pr(D|Hi) under hypothesis Hi. Then
the posterior probability of hypothesis Hi is

Pr(Hi|D) =
Pr(D|Hi) Pr(Hi)∑k
j=1 Pr(D|Hj) Pr(Hj)

(25.4)

The denominator in Equation 25.4 insures that the posterior probabilities
for the various hypotheses sum to 1. It is sometimes convenient to omit this
normalization, simply noting that

Pr(Hi|D) ∝ Pr(D|Hi) Pr(Hi)

that is, that the posterior probability of a hypothesis is proportional to the
product of the likelihood Pr(D|Hi) under the hypothesis and its prior probability
Pr(Hi). If necessary, we can always divide by

∑
Pr(D|Hi) Pr(Hi) to recover the

posterior probabilities.
Bayes’s theorem is also applicable to random variables: Let α represent a

parameter of interest, with prior probability distribution or density p(α), and
let L(α) ≡ p(D|α) represent the likelihood function for the parameter α. Then

p(α|D) =
L(α)p(α)∑

all α′ L(α′)p(α′)

8To employ Bayesian inference, your prior beliefs must be consistent with probability the-
ory, and so the prior probabilities must sum to 1.
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when the parameter α is discrete, or

p(α|D) =
L(α)p(α)∫

A
L(α′)p(α′) dα′

when, as is more common, α is continuous (and where A represents the set of
all values of α).9 In either case,

p(α|D) ∝ L(α)p(α)

That is, the posterior probability or density is proportional to the product of the
likelihood and the prior probability or density. As before, we can if necessary
divide by

∑
L(α)p(α) or

∫
L(α)p(α) dα to recover the posterior probabilities or

densities.10

Two points are noteworthy:

• We require a prior distribution p(α) over the possible values of the param-
eter α (the parameter space) to set the machinery of Bayesian inference
in motion.

• In contrast to a frequentist statistician, a Bayesian treats the parameter α
as a random variable rather than as an unknown constant. I retain Greek
letters for parameters, however, because unlike the data, parameters are
never known with certainty—even after collecting data.

9I’ve resisted starring this material because parameters are almost always continuous. If
you’re unfamiliar with calculus, just think of the integral symbol

∫
(which is an elongated

“S ”) as the continuous analog of a Sum
∑

—indeed, the analogy is very close—here the area
under the density function of a continuous random variable, which represents a probability,
an idea that is surely familiar from a basic statistics course.

10The statement is glib, in that it may not be easy in the continuous case to evaluate
the integral

∫
L(α)p(α) dα. This potential difficulty motivates the use of conjugate priors,

discussed immediately below, and the more generally applicable Markov-chain Monte-Carlo
methods described later in the chapter (Section 25.2).
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Bayes’s theorem can be extended to several hypotheses H1, H2, . . . ,Hk, with prior
probabilities Pr(Hi), i = 1, . . . , k, that sum to 1, and observed data D with like-
lihood Pr(D|Hi) under hypothesis Hi; the posterior probability of hypothesis Hi

is
Pr(Hi|D) =

Pr(D|Hi) Pr(Hi)∑k
j=1 Pr(D|Hj) Pr(Hj)

Similarly, Bayes’s theorem is applicable to random variables such as a parameter α,
with prior probability distribution or density p(α), and likelihood L(α) ≡ p(D|α)

for the data D. Then
p(α|D) =

L(α)p(α)∑
all α′ L(α′)p(α′)

when the parameter α is discrete, or

p(α|D) =
L(α)p(α)∫

A
L(α′)p(α′) dα′

when α is continuous (and where A represents the set of all values of α).

25.1.4 Conjugate and Other Priors

The mathematics of Bayesian inference is especially simple when the prior distri-
bution is selected so that the likelihood and prior combine to produce a posterior
distribution that is in the same family as the prior (see the example in the fol-
lowing section). In this case, we say that the prior distribution is a conjugate
prior.

At one time, Bayesian inference was only practical when conjugate priors
were employed, radically limiting its scope of application. Advances in com-
puter software and hardware, however, make it practical to approximate math-
ematically intractable posterior distributions by simulated random sampling.
Such Markov-chain Monte-Carlo (“MCMC ”) methods (which are described in
Section 25.2) have produced a flowering of Bayesian applied statistics. Never-
theless, the choice of prior distribution can be an important one.

25.1.5 Generalizing the Example of Bayesian Inference

Continuing the previous example, suppose more realistically that you are given
a coin and wish to estimate the probability π that the coin turns up heads,
but cannot restrict π in advance to a small number of discrete values; rather, π
could, in principle, be any number between 0 and 1. To estimate π, you plan
to gather data by independently flipping the coin 10 times. We know from our
previous work that the likelihood (called the Bernoulli likelihood , after the 17th
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Figure 25.1 Bernoulli likelihood function L(π|data) = π7(1− π)3 for any value of

π ≡ Pr(H) between 0 and 1. The maximum-likelihood estimate of π is π̂ = .7.

Century Swiss mathematician Jacob Bernoulli) for this experiment is11

L(π) = πh(1− π)10−h (25.5)

where h is the observed number of heads. You conduct the experiment, obtaining
the data HHTHHHTTHH, and thus h = 7. The Bernoulli likelihood function
for these data appears in Figure 25.1.

The conjugate prior for the Bernoulli likelihood in Equation 25.5 is the beta

11The Bernoulli distribution isn’t introduced in on-line Appendix D on probability and
estimation, but it is the simplest case of the binomial distribution, discussed in Section D.2.1,
where there is only a single binomial trial. The probability mass function of the Bernoulli
distribution is therefore p(x) = πx(1 − π)1−x, where π is the probability of “success” (i..e, a
head in the coin-flipping example), and x = 1 for a success and 0 for a failure.

The Bernoulli likelihood function follows immediately by multiplying the probabilities for
the 10 (more generally, n) independent trials. We could work directly with the binomial
likelihood and obtain the same result, taking the data as h, the number of heads in n binomial
trials, because h is a sufficient statistic for the probability π: See on-line Appendix D.5.4 for
an explanation of sufficiency.

That is, given h heads in n independent flips of a coin with probability π of a head on
an individual flip, the Bernoulli likelihood function is LBern(π) = πh(1 − π)n−h, while the
binomial likelihood is Lbinom(π) =

(h
n

)
πh(1 − π)n−h, where

(h
n

)
≡ n!

h!(n−h)!
is the binomial

coefficient. Because n and h are both constants after the data are observed, the binomial
likelihood is proportional to the Bernoulli likelihood. The Bernoulli likelihood takes the order
of the h heads and n − h tails into account while the binomial likelihood ignores the order
and only attends to the number of heads; the order is immaterial to estimating the value of
π because the flips are independent.



25.1. INTRODUCTION TO BAYESIAN STATISTICAL INFERENCE 9

distribution (see on-line Appendix Section D.3.8),

p(π) = Beta(a, b)

=
πa−1(1− π)b−1

B(a, b)
for 0 ≤ π ≤ 1 and a, b ≥ 0

(where the function B(a, b) in the denominator is given in Appendix Section
D.3.8). When you multiply the beta prior by the likelihood, you get a posterior
density of the form

p(π|D) ∝ πh+a−1(1− π)10−h+b−1 = π6+a(1− π)2+b

that is, a beta distribution with shape parameters a′ = h + a = 7 + a and
b′ = 10− h+ b = 3 + b. Put another way, the prior in effect adds a heads and b
tails to the likelihood.

How should you select a and b? One approach would be to reflect your
subjective assessment of the plausible values of π. For example, you might
confirm that the coin has both a head and a tail, and that it seems to be
reasonably well balanced, suggesting that π is probably close to .5. Picking
a = b = 16 would in effect confine your estimate of π to the range between .3
and .7 (see Figure 25.2, which conveys the flexibility of the beta family of prior
distributions). If you are uncomfortable with this restriction, then you could
select smaller values of a and b: When a = b = 1, all values of π are equally
likely (i.e., have equal probability density)—a so-called flat or uninformative
prior distribution, reflecting complete ignorance about the value of π.12

Figure 25.3 shows the posterior distributions for π under these two priors.
Under the flat prior, the posterior is proportional to the likelihood, and there-
fore if you take the mode of the posterior as your estimate of π, you get the
maximum-likelihood estimate π̂ = .7.13 The posterior for the informative prior
a = b = 16, in contrast, has a mode at π ≈ .55 , which is much closer to the
mode of the prior distribution π = .5.

It may be disconcerting that the conclusion should depend so crucially on
the prior distribution, but this result is a consequence of the very small sample
(10 coin flips) in the example: Recall that using a beta prior in this case is like
adding a+ b observations to the data. As the sample size grows, the likelihood
comes to dominate the posterior distribution, and the influence of the prior
distribution fades.14 In the current example, if the coin is flipped n times, then
the posterior distribution takes the form

p(π|D) ∝ πh+a−1(1− π)n−h+b−1

12But see the discussion of uninformative priors in the following section.
13An alternative is to take the mean or median of the posterior distribution as a point

estimate of π. In most cases, however, the posterior distribution will approach a normal
distribution as the sample size increases, and the posterior mean, median, and mode will
therefore be approximately equal if the sample size is sufficiently large.

14An exception to this rule occurs when the prior distribution assigns 0 density to some
values of the parameter; such values will necessarily have posterior densities of 0 regardless of
the data.
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Symmetric Beta Priors

a = 0.5,  b = 0.5
a = 1,  b = 1
a = 4,  b = 4
a = 16,  b = 16
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p(π)
Asymmetric Beta Priors

a = 1,  b = 4
a = 4,  b = 1
a = 4,  b = 8
a = 8,  b = 4

Figure 25.2 Beta priors for various choices of a and b: (a) symmetric priors, for which a = b;
(b) asymmetric priors, for which a 6= b. Beta(0.5, 0.5) is the Jeffreys prior,

discussed in Section 25.1.6.

and the numbers of heads h and tails n− h will grow with the number of flips.
It is intuitively sensible that your prior beliefs should carry greater weight when
the sample is small than when it is large.

Bayesian inference is simplest with a conjugate prior distribution, which combines
with the likelihood to produce a posterior distribution in the same family as the
prior. For example, if h counts the number of heads in n independent flips of a coin
with probability π of obtaining a head on an individual flip, then the Bernoulli
likelihood for the data is L(π) = πh(1 − π)n−h. Combining this likelihood with
the prior distribution p(π) = Beta(a, b) produces a posterior distribution in the
same family as the prior, p(π|D) = Beta(h+ a, n− h+ b).

25.1.6 More on Uninformative Prior Distributions

In estimating a probability π from a sequence of Bernoulli trials, as in the
previous section, the flat prior is the rectangular density function p(π) = 1, with
the parameter π bounded between 0 and 1. In other cases, such as estimating
the mean µ of a normal distribution, which is unbounded, a flat prior of the form
p(µ) = c (for any positive constant c) over −∞ < µ <∞ does not enclose a finite
probability, and hence cannot represent a density function. When combined
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Figure 25.3 Posterior distributions for the probability of a head π under two prior

distributions: the flat beta prior with a = 1, b = 1 (the posterior for which is

shown as a solid curve), and the informative beta prior with a = 16, b = 16 (the

broken curve). The data contain 7 heads in 10 flips of a coin. The two horizontal

lines near the bottom of the graph show 95% central posterior intervals (described

in Section 25.1.7) corresponding to the two priors.
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with the likelihood, such an improper prior can nevertheless lead to a proper
posterior distribution—that is, to a posterior density that integrates to 1.

A more subtle point is that a flat prior for one parametrization of a prob-
ability model for the data need not be flat for an alternative parametrization.
For example, suppose that rather than the probability π of a head in the pre-
ceding example, you take the odds ω ≡ π/(1− π) as the parameter of interest,
or the logit (i.e., log-odds) Λ ≡ loge [π/(1− π)]; a flat prior for ω or for Λ is
not flat for π (see Figure 25.4), and so will lead to a different posterior estimate
of π. This lack of invariance contrasts with inference based purely on the like-
lihood, where, within broad conditions, the maximum-likelihood estimate f̂(θ)

of a transformation f(θ) of the parameter θ is simply f(θ̂), where θ̂ is the MLE
of θ.

A related question is whether there exists a prior distribution that is in-
variant with respect to transformation of the parameter of interest. This ques-
tion was answered in the affirmative by Sir Harold Jeffreys (1946). In the
case of estimating a probability π, the Jeffreys prior takes the form pJ(π) =

1/
[
Π
√
π(1− π)

]
(see Figure 25.4).15 The notation is a bit awkward here: π is

the probability of success, and so I use an uppercase Π ≈ 3.14159 for the math-
ematical constant, whose role here is to ensure that the prior density integrates
to 1. The Jeffreys prior pJ(π) is a beta distribution with a = b = 0.5 (shown in
Figure 25.2) and consequently is a conjugate prior to the Bernoulli likelihood.

Finally a note on terminology: I haven’t differentiated clearly between “flat”
and “uninformative” priors, using the terms essentially interchangeably, but the
latter is really a more general idea than the former, and, as we’ve seen, the
notion of a flat prior doesn’t entirely hold up under close scrutiny. Synonyms,
or near synonyms, for uninformative priors, are non-informative priors, vague
priors, and diffuse priors. So-called weakly or vaguely informative priors are
often employed in practice, and are selected to place broad plausible constraints
on the value of a parameter.

There are several kinds of uninformative prior distributions. The flat prior asigns
equal probability density to all values of a parameter; if the parameter is un-
bounded, then the flat prior is improper, in that it doesn’t integrate to 1, and
a flat prior for a parameter is not in general flat for a transformation of the pa-
rameter. The Jeffreys prior for a parameter (introduced by Sir Harold Jeffreys),
in contrast, is invariant with respect to transformation of the parameter. Weakly
informative priors are often employed in practice, and are selected to place broad
plausible constraints on the value of a parameter.

15The general solution for the Jeffreys prior turns out to be remarkably simple, and is
explored in Exercise 25.4. Although I don’t take it up here, the Jeffreys prior can be extended
to several parameters. There are, as well, other general uninformative priors based on various
principles, such as reference priors, introduced by Bernardo (1979).
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Figure 25.4 Three putatively uninformative priors expressed on the probability scale π: The

flat prior on the probability scale (broken line); the flat prior on the logit scale
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25.1.7 Bayesian Interval Estimates
As in classical frequentist statistical inference, it is desirable not only to pro-
vide a point estimate of a parameter but also to quantify uncertainty in the
estimate. The posterior distribution of the parameter displays statistical uncer-
tainty in a direct form, and the standard deviation of the posterior distribution
is a Bayesian analog of the frequentist standard error of an estimate. One
can also compute various kinds of Bayesian interval estimates (termed credible
intervals and analogous to frequentist confidence intervals) from the posterior
distribution.

A very simple choice of Bayesian interval estimate is the central posterior
interval : The 100a% central posterior interval runs from the (1 − a)/2 to the
(1 + a)/2 quantile of the posterior distribution; for example, the 95% central
posterior interval runs from the .025 to the .975 quantile of the posterior. Un-
like a classical confidence interval, however, the interpretation of which is fa-
mously convoluted (to the confusion of innumerable students of basic statistics),
a Bayesian credible interval has a simple interpretation as a probability state-
ment: The probability is .95 that the parameter is in the 95% posterior interval.
This difference reflects the Bayesian treatment of a parameter as a random vari-
able, with the posterior distribution expressing subjective uncertainty about the
value of the parameter after observing the data.

Ninety-five percent central posterior intervals for the example are shown for
the two posterior distributions in Figure 25.3 (page 11).16

Bayesian interval estimates, termed credible intervals (analogous to frequentist
confidence intervals), are computed from the posterior distribution of a parameter.
The 100a% central posterior interval runs from the (1 − a)/2 to the (1 + a)/2

quantile of the posterior distribution. A Bayesian credible interval has a simple
interpretation as a probability statement: For example, the probability is .95 that
the parameter is in the 95% posterior interval.

25.1.8 Bayesian Inference for Several Parameters
Bayesian inference extends straightforwardly to the simultaneous estimation
of several parameters α ≡ [α1, α2, . . . , αk]′.17 In this case, it is necessary to
specify a joint prior distribution for the parameters, p(α),18 along with the

16Page references in this chapter may be to pages within the chapter or to pages in the
printed text (i.e., Chapters 1 through 24). The references should, however, be clear from the
context: In this case, for example, Figure 25.2 is obviously in the current chapter.

17If you’re not familiar with vector notation, just think of α ≡ [α1, α2, . . . , αk]′ as a collec-
tion of several parameters.

18It’s frequently the case in practice that prior distributions are specified independently for
the various parameters, so that the joint prior is the product of the separate (marginal) priors.
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joint likelihood, L(α). Then, as in the case of one parameter, the joint posterior
distribution is proportional to the product of the prior distribution and the
likelihood,

p(α|D) ∝ p(α)L(α) (25.6)

or
p(α|D) =

p(α)L(α)∫
A
p(α∗)L(α∗)dkα∗

(25.7)

where A is the set of all values of the parameter vector α (i.e., A is the mul-
tidimensional parameter space). Inference typically focuses on the marginal
posterior distribution of each parameter, p(αi|D), or possibly on the distribu-
tions of scalar functions of the parameters, such as predicted values in regression,
which are functions of regression coefficients, or the ratio or difference of two
parameters.19

Bayesian inference extends to the simultaneous estimation of several parameters
α ≡ [α1, α2, . . . , αk]′. Given the joint prior distribution for the parameters p(α)

along with the joint likelihood L(α) based on data D, the posterior distribution
of α is

p(α|D) =
p(α)L(α)∫

A
p(α∗)L(α∗)dkα∗

where A is the set of all values of the parameter vector α (i.e., the multidimensional
parameter space).

25.2 Markov-Chain Monte-Carlo Simulation
To find p(α|D) explicitly is simple for a conjugate prior. More generally, how-
ever, we must integrate over all values A of α, and the integral in the denomi-
nator of Equation 25.7 is usually intractable analytically. Markov-chain Monte
Carlo (MCMC ) is a set of methods for drawing random samples from—and
hence approximating—the posterior distribution p(α|D) without having explic-
itly to evaluate the denominator of Equation 25.7. MCMC methods, coupled
with the increasing power of computer hardware, have rendered Bayesian infer-
ence practical for a broad range of statistical problems.

There are three common (and related) MCMC methods: the Metropolis-
Hastings algorithm, the Gibbs sampler, and Hamiltonian Monte Carlo:

• What’s come to be called the Metropolis-Hastings algorithm was originally
formulated by Metropolis et al. (1953) and subsequently generalized by

19Although there may be several parameters, a scalar function of the parameters returns a
single number.
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Hastings (1970). I’ll explain the more general version of the algorithm,
but will use the original, simpler version in an initial example and in an
application to Bayesian inference.

• The Gibbs sampler is an MCMC algorithm developed for applications in
image processing by Geman and Geman (1984), who named it after the
American physicist Josiah Gibbs (1839–1903). Gelfand and Smith (1990)
pointed out the applicability of the Gibbs sampler to statistical problems.
The Gibbs sampler is based on the observation that the joint distribu-
tion of an n-dimensional vector random variable x can be composed from
the conditional distribution of each of its elements given the others, that is
p(Xj |x−j) for j = 1, 2, . . . , n (where x−j = [X1, X2, . . . , Xj−1, Xj+1, . . . , Xn]′

is x with the jth element removed). Although it was developed indepen-
dently, in this basic form the Gibbs sampler turns out to be a special case
of the general Metropolis-Hastings algorithm (see Gelman et al., 2013,
page 281). The popular Bayesian statistical software BUGS (Lunn et al.,
2009) is based on the Gibbs sampler, and indeed its name is an acronym
for Bayesian inference Using Gibbs Sampling.

• Hamiltonian Monte Carlo (HMC ), introduced to statistics by Neal (1996),
is an improvement to the Metropolis-Hastings algorithm that, when prop-
erly tuned, provides more efficient sampling from a target distribution.
Hamiltonian Monte Carlo is named after the Irish mathematician and
physicist William Rowan Hamilton (1805–1865), who reformulated the
mathematics of classical Newtonian mechanics. HMC exploits an analogy
between exploring the surface of a probability density function and the
motion of an object along a frictionless surface, propelled by its initial
momentum and gravity. HMC is considered the best current method of
MCMC for sampling from continuous distributions, and is the basis for
the state-of-the-art Stan Bayesian software (Carpenter et al., 2017).20

20Stan is named after Stanislaw Ulam, a mathematician and physicist who invented Monte-
Carlo simulation in the 1940s.
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Markov-chain Monte Carlo (MCMC ) is a set of methods for drawing random
samples from—and hence approximating—the posterior distribution

p(α|D) =
p(α)L(α)∫

A
p(α∗)L(α∗)dkα∗

without having explicitly to evaluate the integral in the denominator, which is typ-
ically intractible analytically. MCMC methods have therefore rendered Bayesian
inference practical for a broad range of statistical problems.
There are three common (and related) MCMC methods: the Metropolis-Hastings
algorithm, the Gibbs sampler, and Hamiltonian Monte Carlo (HMC ). HMC is
considered the best current method of MCMC for sampling from continuous dis-
tributions.

25.2.1 The Metropolis-Hastings Algorithm*
Here’s the problem that the Metropolis-Hastings algorithm addresses: We have
a continuous vector random variable x with n elements and with density func-
tion p(x). We don’t know how to compute p(x), but we do have a function
proportional to it, p∗(x) = c × p(x), where c =

∫
X
p∗(x)dnx. We don’t know

the normalizing constant c, which makes p(x) integrate to 1, or we’d know
p(x). We nevertheless want to draw a random sample from the target distribu-
tion p(x). One way this situation might arise is in Bayesian inference, where
p∗(·) could be the unnormalized posterior, computed (as in Expression 25.6 on
page 15) as the product of the prior density and the likelihood.

The Metropolis-Hastings algorithm starts with an arbitrary value x0 of x,
and proceeds to generate a sequence ofm realized values x1,x2, . . . ,xi−1,xi, . . . ,xm.
Each subsequent realization is selected randomly based on a candidate or pro-
posal distribution, with conditional density function f(xi|xi−1), from which we
know how to sample. The proposal distribution f(·) is generally distinct from
the target distribution p(·).

As the notation implies, the proposal distribution employed depends only
on the immediately preceding value of x. The next value of x sampled from the
proposal distribution may be accepted or rejected, hence the term “proposal”
or “candidate.” If the proposed value of xi is rejected, then the preceding value
is retained; that is, xi is set to xi−1. This procedure—where the probability of
transition from one “state” to another (i.e., one value of x to the next) depends
only on the previous state—defines a Markov process,21 yielding a Markov chain
of sampled values.

Within broad conditions, the choice of proposal distribution is arbitrary.
For example, it’s necessary that the proposal distribution and initial value x0

lead to a Markov process capable of visiting the complete support of x—that is,
21Named after the Russian mathematician Andrey Andreevich Markov (1856–1922).
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all values of x for which the density p(x) in nonzero. And different choices of
proposal distributions may be differentially desirable, for example, in the sense
that they are more or less efficient—that is, tend to require respectively fewer
or more generated values to cover the support of x thoroughly.

With this background, the Metropolis-Hastings algorithm proceeds as fol-
lows. For each i = 1, 2, . . . ,m:

1. Sample a candidate value x∗ from the proposal distribution f(xi|xi−1).

2. Compute the acceptance ratio

a =
p(x∗)f(x∗|xi−1)

p(xi−1)f(xi−1|x∗)
(25.8)

=
p∗(x∗)f(x∗|xi−1)

p∗(xi−1)f(xi−1|x∗)

The substitution of p∗(·) for p(·) in the second line of Equation 25.8 is
justified because the unknown normalizing constant c (recall, the num-
ber that makes the density integrate to 1) cancels in the numerator and
denominator, making the ratio in the equation computable even though
the numerator and denominator in the first line of the equation are not
separately computable. Calculate a′ = min(a, 1).

3. Generate a uniform random number u on the unit interval, U ∼ Unif(0, 1).22
If u ≤ a′, set the ith value in the chain to the proposal, xi = x∗; otherwise
retain the previous value, xi = xi−1. In effect, the proposal is accepted
with certainty if it is “at least as probable” as the preceding value, taking
into account the possible bias in the direction of movement of the pro-
posal function from the preceding value. If the proposal is less probable
than the preceding value, then the probability of accepting the proposal
declines with the ratio a, but isn’t 0. Thus, the chain will tend to visit
higher-density regions of the target distribution with greater frequency
but will still explore the entire target distribution. It can be shown (e.g.,
Chib and Greenberg, 1995) that the limiting distribution of the Markov
chain (the distribution to which the sample tends asm→∞) is indeed the
target distribution, and so the algorithm should work if m is big enough.

The Metropolis-Hastings algorithm is simpler when the proposal distribu-
tion is symmetric, in the sense that f(xi|xi−1) = f(xi−1|xi). This is true,
for example, when the proposal distribution is multivariate-normal (see on-line
Appendix Section D.3.5) with mean vector xi−1 and some specified covariance

22The uniform distribution in introduced in on-line Appendix Section D.1.2 as the rect-
angular distribution. The notation X ∼ Unif(a, b) means that the random variable X is
uniformly (or rectangularly) distributed with a minimum value of a and a maximum of b.
Then p(x) = 1/(b− a) for a ≤ x ≤ b and 0 otherwise.



25.2. MARKOV-CHAIN MONTE-CARLO SIMULATION 19

matrix S:

f(xi|xi−1) =
1

(2π)n/2
√

det S
× exp

[
−1

2
(xi − xi−1)′S−1(xi − xi−1)

]
= f(xi−1|xi)

Then, a in Equation 25.8 becomes

a =
p∗(x∗)

p∗(xi−1)
(25.9)

which (again, because the missing normalizing constant c cancels) is equivalent
to the ratio of the target density at the proposed and preceding values of x. This
simplified version of the Metropolis-Hastings algorithm, based on a symmetric
proposal distribution, is the version originally introduced by Metropolis et al.
(1953).

By construction, the Metropolis-Hastings algorithm generates statistically
dependent successive values of x. If an approximately independent sample is
desired, then the sequence of sampled values can be thinned by discarding a
sufficient number of intermediate values of x, retaining only every kth value.
Additionally, because of an unfortunately selected initial value x0, it may take
some time for the sampled sequence to approach its limiting distribution—that
is, the target distribution. It may therefore be advantageous to discard a number
of values at the beginning of the sequence, termed the burn-in period .

Example: Sampling from the Bivariate-Normal Distribution

I’ll demonstrate the Metropolis algorithm by sampling from a bivariate-normal
distribution (introduced in on-line Appendix Section D.3.5) with the following
(arbitrary) mean vector and covariance matrix:

µ = [1, 2]′ (25.10)

Σ =

[
1 1
1 4

]
It’s not necessary to use MCMC in this case, because it’s easy to approxi-
mate bivariate-normal probabilities or to draw samples from the distribution
directly, but the bivariate-normal distribution provides a simple setting in which
to demonstrate the Metropolis algorithm, and for pedagogical purposes it helps
to know the right answer in advance—that is, the example is selected for its
transparency.

Let’s pretend that we know the bivariate-normal distribution only up to
a constant of proportionality. To this end, I omit the normalizing constant,
which for this simple example works out to 2π ×

√
3 (see on-line Appendix

Section D.3.5).
To illustrate that the proposal distribution and the target distribution are

distinct, I use a bivariate-rectangular proposal distribution centered at the pre-
ceding value xi−1 with half-extent δ1 = 2 in the direction of the coordinate x1
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and δ2 = 4 in the direction of x2, reflecting the relative sizes of the standard
deviations of the two variables. This proposal distribution is symmetric, as
required by the simpler Metropolis algorithm. Clearly, because it has finite sup-
port, the rectangular proposal distribution doesn’t cover the entire support of
the bivariate-normal target distribution, which extends infinitely in each direc-
tion, but because the proposal distribution “travels” (i.e., moves in the {x1, x2}
plane) with xi, it can generate a valid Markov chain.

I arbitrarily set x0 = [0, 0]′, and sampled m = 105 values of x. As it
turned out, 41.7% of proposals were accepted. To get a sense of how Metropolis
sampling proceeds, I show the first 50 accepted proposals in Figure 25.5, along
with the duplicated points corresponding to rejected proposals (of which there
are 75, shown as +s, which tend to be in lower-density locations). The 95%
concentration ellipse for the bivariate-normal distribution is also shown on the
graph.23

How well does the Metropolis algorithm approximate the bivariate-normal
distribution? Here are the mean vector and covariance matrix of the sam-
pled points, which are quite close to the corresponding parameters in Equa-
tions 25.10:

µ̂ = [1.003, 1.987]′

Σ̂ =

[
0.989 0.972
0.972 3.963

]
Figure 25.6 shows all of the 105 sampled points together with several theoret-
ical elliptical contours of constant density and corresponding empirical density
contours.24 Clearly, the Metropolis algorithm does a good job of recovering the
target bivariate-normal density.

As mentioned, the Metropolis algorithm doesn’t produce an independent
random sample from the target distribution. One way to measure the depen-
dence among the sampled values is to compute their autocorrelations. Focus, for
example, on the vector of jth sampled coordinates, say xj = [x1j , x2j , . . . , xmj ]

′,
with mean x̄j . The sample autocorrelation at lag t is defined as25

rtj =

∑m
i=t+1(xij − x̄j)(xi−t,j − x̄j)∑m

i=1(xij − x̄j)2
(25.11)

Figure 25.7 shows autocorrelations at lags t = 0, 1, . . . , 50, for the coordinates
x1 and x2 in the example (where the autocorrelation at lag 0, r0, is necessarily
1). The autocorrelations are large at small lags, but decay to near 0 by around
lag 25, which suggests thinning by selecting, say, every 25th value to produce
an approximately independent sample.

23As explained in Section 9.4.4, density contours of the multivariate-normal distribution are
ellipsoidal—that is, ellipses in the bivariate case.

24The empirical density contours are computed by a two-dimensional kernel-density estima-
tor ; see Silverman (1986, Chap. 4). One-dimensional kernel-density estimation is introduced
in Section 3.1.2.

25See Chapter 16 on time-series regression for more on autocorrelations.
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Figure 25.5 First 50 accepted proposals and duplicated points representing rejected proposals,

sampling from the bivariate-normal distribution in Equations 25.10, which is

represented by its 95% concentration ellipse. The solid dots represent the 50

distinct points, corresponding to accepted proposals, starting out as light gray and

getting progressively darker, with the arrows showing the transitions. Duplicated

points corresponding to rejected proposals, shown as hollow dots, are slightly offset

so that they don’t precisely over-plot the accepted proposals. The rejected

proposals are shown as +s connected to the corresponding duplicated points by

broken lines.
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Figure 25.6 The gray dots show m = 105 values sampled by the Metropolis algorithm from

the bivariate-normal distribution in Equations 25.10. The slightly irregular solid

lines represent estimated density contours enclosing 50%, 95%, and 99% of the

sampled points. The broken lines are the corresponding elliptical density contours

of the bivariate-normal target distribution.
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(b)  x2

Figure 25.7 Autocorrelations of the sampled values of (a) x1 and (b) x2 produced by the

Metropolis algorithm applied to the bivariate-normal distribution in

Equations 25.10.

A Simple Application to Bayesian Inference

I’ll illustrate the application of the Metropolis algorithm to Bayesian inference
by considering a simple and familiar single-parameter problem: estimating a
probability (or population proportion) π, a problem that we previously encoun-
tered in this chapter (in Section 25.1.5).

To recapitulate briefly, the likelihood for this problem comes from the Bernoulli
distribution. As before, I’ll use a prior distribution from the beta family, the
conjugate prior to the Bernoulli likelihood. The posterior distribution is also
beta, and it’s therefore not necessary to approximate it by MCMC. Doing so,
however, allows us to compare the results of MCMC with the known right an-
swer.

Recall our coin-flipping experiment, which produced h = 7 heads in n = 10
independent flips of a coin, with Bernoulli likelihood L(π|h = 7) = πh(1 −
π)n−h = π7(1 − π)3. As in Section 25.1.5, I’ll consider two prior distributions:
a flat prior, in which the parameters of the Beta(a, b) distribution (see on-line
Appendix Section D.3.8) are set to a = b = 1, and an informative prior centered
on the population proportion π = 0.5 (representing a “fair” coin) in which
a = b = 16. In the first case, the posterior is Beta(8, 4), and in the second case,
it is Beta(23, 19). These posteriors appear in Figure 25.3 (page 11).

For the first simulation—with a flat prior—I set the standard deviation of
the normal proposal distribution N(πi−1, s

2) in the Metropolis algorithm to
s = 0.1, starting arbitrarily from π0 = 0.5 and sampling m = 105 values from
the posterior distribution of π, with an acceptance rate of 77.5%. An estimate of
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the resulting posterior density function is shown in panel (a) of Figure 25.8, along
with the true Beta(8, 4) posterior density; panel(b) shows a quantile-comparison
(QQ) plot of the sampled values versus the Beta(8, 4) distribution: If the values
were sampled from Beta(8, 4), then the points would lie approximately on a 45◦

straight line (shown on the QQ plot), within the bounds of sampling error.26

The agreement between the approximate posterior produced by the Metropo-
lis algorithm and the true posterior distribution is very good, except at the
extreme left of the distribution, where the sampled values are slightly shorter-
tailed than the Beta(8, 4) distribution. The results for the second simulation,
employing the informative Beta(16, 16) prior, for which the true posterior is
Beta(23, 19) (shown in panels (c) and (d) of Figure 25.8), are similarly encourag-
ing. The acceptance rate for the Metropolis algorithm in the second simulation
was 63.2%. In both cases (but particularly with the flat prior), the Metropolis
samples of π are highly autocorrelated and would require thinning to produce
an approximately independent sample; see Figure 25.9.

In the first case, using the flat Beta(1, 1) prior, an estimate of π based
on the median of the true Beta(8, 4) posterior distribution is π̂ = 0.676, and
the 95% Bayesian credible interval for π from the 0.025 and 0.975 quantiles
of the posterior is 0.390 < π < 0.891. In comparison, using the median and
0.025 and 0.975 quantiles of the Metropolis sample, we have π̂ = 0.677 and
0.392 < π < 0.891.

The analogous results for the second case, with the informative Beta(16, 16)
prior, are π̂ = 0.548 and 0.397 < π < 0.693 based on the true Beta(23, 19)
posterior, and π̂ = 0.549 and 0.396 < π < 0.692 based on the Metropolis
sample.

Finally, returning to the flat prior, Figure 25.10 demonstrates how making
the standard deviation of the proposal distribution larger (it’s set initially, recall,
to 0.1) can, up to a point, decrease the autocorrelation of the sampled values,
reducing the need for thinning. In this example, setting the standard deviation
of the proposal distribution to 0.4 produces lower autocorrelation in the sampled
values than do standard deviations of 0.1 or 0.7.

The acceptance rate of proposals in this example declines, however, as the
standard deviation of the proposal distribution increases:

SD of Proposal Distribution Acceptance Rate
0.1 0.775
0.4 0.373
0.7 0.230

Because the Metropolis algorithm spends more time in high-density regions of
the target distribution than in low-density regions, taking larger steps away
from current parameter values tends to decrease the density at proposed values,
consequently decreasing the probability of acceptance.

26See Section 3.1.3 for an explanation of QQ plots.
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Figure 25.8 Comparing the results produced by the Metropolis algorithm to the true posterior

distribution of the population proportion of heads π, based on an independent

sample of size n = 10 with h = 7 heads, and a prior distribution in the conjugate

beta family. For panels (a) and (b), the flat prior Beta(1, 1) was used, producing

the true posterior Beta(8, 4); in panels (c) and (d), the informative prior

Beta(16, 16) was used, producing the true posterior Beta(23, 19). Panels (a) and

(c) show nonparametric density estimates (solid lines) for the Metropolis samples,

comparing these to the true posterior densities (broken lines); panels (b) and (d)

are quantile-comparison plots for the Metropolis samples versus the true posterior

distributions.
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(b)

Figure 25.9 Autocorrelations of the Metropolis samples from the two posterior distributions:

(a) based on the flat Beta(1, 1) prior, and (b) based on the informative Beta(16,

16) prior.

25.2.2 The Gibbs Sampler*

As I mentioned, the simple Gibbs sampler described in this section is based
on the observation that the joint distribution of an n-dimensional vector ran-
dom variable x can be composed from the conditional distribution of each
of its elements given the others, that is p(Xj |x−j) for j = 1, 2, . . . , n (where
x−j = [X1, X2, . . . , Xj−1, Xj+1, . . . , Xn]′ is x with the jth element removed).
There are many variations on the Gibbs sampler, such as its application to sub-
sets of x (some of which are of size greater than 1) that partition x: That is,
with suitable ordering of its elements, x = [x′1,x

′
2, . . . ,x

′
q]′. The correspond-

ing (generally multivariate) conditional distributions are p(xj|x−j). Conditional
distributions of this form can arise naturally in the process of specifying hierar-
chical Bayesian statistical models in circumstances where it is difficult to derive
the joint distribution p(x) analytically.

The basic Gibbs sampler is simple to describe and proceeds as follows:

1. Pick an arbitrary set of initial values x = x0.

2. Then for each of m iterations, sample in succession each element of x from
its conditional distribution, conditioning on the most recent values of the
other elements. That is for i = 1, 2, . . . ,m:

Sample x(i)
1 from p(x1|X2 = x

(i−1)
2 , . . . , Xn = x

(i−1)
n ).

Sample x(i)
2 from p(x2|X1 = x

(i)
1 , X3 = x

(i−1)
3 , . . . , Xn = x

(i−1)
n ).
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(b) proposal sd = 0.4

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag t

Au
to

co
rre

la
tio

n 
 r t

(b) proposal sd = 0.7

Figure 25.10 Autocorrelations of the sampled values of π produced by the Metropolis algorithm

using a flat prior, for various standard deviations of the normal proposal

distribution.
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...
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2 , . . . , x

(i)
n ]′.

Using the Gibbs Sampler to Sample From a Bivariate-Normal Distri-
bution

As I did for the Metropolis algorithm in Section 25.2.1, I’ll illustrate the Gibbs
sampler by drawing values from the bivariate-normal distribution with mean
vector and covariance matrix

µ = [1, 2]′

Σ =

[
1 1
1 4

]
As previously mentioned, this example is artificial because it’s easy to sample
directly from the bivariate-normal distribution.

To apply the Gibbs sampler, we need the conditional distributions p(x1|x2)
and p(x2|x1). In the bivariate-normal case, the conditional distributions are
normal, with means and standard deviations provided by the population linear
regression of each variable on the other: The regression of X1 on X2 is

E(X1|x2) = α12 + β12x2

where

β12 =
σ12

σ2
2

α12 = µ1 − β12µ2

with constant error (i.e., conditional) variance

σ2
1|2 = σ2

1

(
1− σ2

12

σ2
1σ

2
2

)
In these equations, µ1 and µ2 are the unconditional means of X1 and X2, σ2

1

and σ2
2 are their variances, and σ12 is their covariance. Thus

X1|x2 ∼ N
(
α12 + β12x2, σ

2
1|2

)
The results for the conditional distribution of X2 given X1 = x1 are entirely
analogous.

I sampled m = 105 values of x, producing the following estimated means
and covariances:

µ̂ = [1.007, 2.017]′

Σ̂ =

[
0.997 1.002
1.002 4.022

]
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Figure 25.11 The gray dots show m = 105 values drawn by the Gibbs sampler from the

bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2
1 = 1, σ2

2 = 4, and σ12 = 1.

The slightly irregular solid lines represent estimated density contours enclosing

50%, 95%, and 99% of the sampled points. The broken lines are the corresponding

elliptical density contours of the bivariate-normal target distribution.

The sampled values are shown in Figure 25.11 along with a nonparametric
density estimate and the corresponding bivariate-normal density contours. Ev-
idently, the Gibbs sampler, like the Metropolis algorithm, accurately recovers
the means, variances, covariance, and shape of the bivariate-normal target dis-
tribution.

The values of X1 and X2 drawn by the Gibbs sampler are autocorrelated,
but less so than those produced for this example by the Metropolis algorithm:
See Figure 25.12 (and cf., Figure 25.7 on page 23). Consequently, we can get
an approximately independent sample with less thinning (taking every third or
fourth value).

25.2.3 Hamiltonian Monte Carlo*

As I mentioned, Hamiltonian Monte Carlo is named after the 19th Century
physicist William Rowen Hamilton, who reformulated the mathematics of clas-
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Figure 25.12 Autocorrelations of the values of (a) x1 and (b) x2 drawn by the Gibbs sampler

applied to the bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2
1 = 1,

σ2
2 = 4, and σ12 = 1.

sical Newtonian mechanics.27 HMC exploits an analogy between exploring the
surface of a probability density function and the motion of an object along a
frictionless surface, propelled by its initial momentum and gravity.

Hamiltonian Dynamics

Extending an example suggested by Neal (2011), think of a hockey puck (Neal’s
paper and this chapter were written in Canada after all) given an initial push in
a particular direction on a frictionless and completely flat horizontal ice surface:
The puck will continue to travel indefinitely in a straight line and with constant
velocity in the direction in which it’s pushed.28

Now imagine a surface that isn’t flat, such as the surface in Figure 25.13: The
graphs in this figure record the final results of two 100-step simulations, in which
two pucks are released on the surface depicted above the point x0 = (−3.5, 2)′,
where x1 and x2 are the horizontal axes of the 3D space:

• The puck at the left is released with 0 momentum, and is therefore initially
subject only to the force of gravity; the puck oscillates between the release
point and an equally high point opposite to it on the surface.

27Although it’s slightly off-topic, Susskind and Hrabovsky (2013) provide an especially lucid
account of classical mechanics, including an explanation of Hamilton’s contribution to the
subject. Monte-Carlo simulation methods were coincidentally originally developed to solve
problems in physics, and these methods later acquired prominent statistical applications.

28This is Newton’s first law of motion: the law of inertia.
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Figure 25.13 Trajectories described by two pucks released on a frictionless surface. The puck at

the left is released with 0 initial momentum; the puck at the right with small

momentum in the directions of x1 and x2. The surface was generated by the

bivariate-normal distribution with µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, and σ12 = 0, as

described in the text.

• The puck at the right is released with small momentum (0.5 and 1, respec-
tively) in the positive directions of the x1 and x2 axes; this puck describes
a more complex looping trajectory over the surface but also returns to its
starting point.

Assuming, without any real loss of generality, that the puck has mass equal to
1,29 at any instant, the potential energy of the puck due to gravity is equal to
its height, while its kinetic energy is equal to the sum of the squared values
of its momentum (mass × velocity = 1 × velocity) in the directions of x1 and
x2. Because there is no loss of energy due to friction, conservation of energy
dictates that the sum of potential energy and kinetic energy remains the same
as the puck moves. When the puck moves downwards on the surface, its velocity
increases, and hence its momentum and kinetic energy increase, while its height
and hence its potential energy decrease; when the momentum of the puck carries
it upwards on the surface, against gravity, the opposite is the case: Momentum
and kinetic energy decrease, height and potential energy increase.

By repeatedly introducing randomness into the momentum of the puck,
HMC is able to visit the surface more generally, favoring lower regions of the
surface. In a statistical application, the surface in question is the negative of the

29The motion of the puck doesn’t depend on its mass—recall Galileo’s famous, if apocryphal,
experiment in which he simultaneously dropped objects of different weight (but probably not
hockey pucks) from the Leaning Tower of Pisa and observed that they hit the ground at the
same time—and setting mass to 1 simplifies the formulas given below. Thought of another
way, the units of mass, say kg, are purely conventional and arbitrary, so we’re entitled to pick
units that make the mass of the puck equal to 1.
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Figure 25.14 Trajectory described by a puck released on a frictionless surface with 0 initial

momentum; 400 steps are shown. The surface was generated by the

bivariate-normal distribution with µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, and σ12 = 0.5, as

described in the text.

log of a multivariate probability density function (up to an additive constant on
the log-density scale—i.e., a multiplicative constant on the density scale), and
thus low regions correspond to regions of high probability. In the context of
exploring a probability-density surface, the position variables X1 and X2 cor-
respond to the random variables to be sampled, while the momentum variables
are purely artificial, though necessary for the physical Hamiltonian analogy.

Metropolis proposals in HMC are more adapted to the probability surface
to be sampled than in the traditional Metropolis or Metropolis-Hastings algo-
rithms. By adjusting factors (discussed below) that affect the trajectory, it’s
possible to increase the proportion of accepted proposals and to decrease the
autocorrelation of successively sampled values.

The surface shown in Figure 25.13 is for a bivariate-normal distribution
with mean vector µ = (0, 0)′ and covariance matrix Σ = I2 (the order-two iden-
tity matrix)—that is, two uncorrelated standard-normal random variables. The
graphed surface is the negative log-density of this bivariate-normal distribution,
omitting the normalizing constant. Thus, the negative log-density surface differs
from the graphed surface only by a constant difference in elevation, producing
essentially the same dynamics for pucks sliding along both surfaces. This sur-
face is a simple “bowl,” whose vertical slices are parabolic and whose horizontal
slices are circular, yielding the very simple dynamics illustrated in Figure 25.13.

For a partly contrasting example, consider the surface shown in Figure 25.14,
generated by the bivariate normal distribution with mean vector µ = (0, 0)′ and
covariance matrix

Σ =

[
1 0.5

0.5 1

]
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That is, X1 and X2 are standard-normal random variables with correlation
ρ = 0.5. As in the first example, a puck is released with 0 momentum above
the point x = (−3.5, 2)′, and now 400 steps are shown, tracing out a much
more elaborate trajectory than before. In this case, the “bowl” representing the
negative log-density function is still parabolic in vertical cross-sections, but it is
now elliptical in horizontal cross-sections, producing more complex dynamics.30

In the general case with which we’ll eventually be concerned, the value of
the surface giving the “elevation” of the puck is a function g(x) of n “position”
variables, comprising the vector x. In a statistical application of HMC, the
elements of x are the random variables that we want to sample, and the height of
the surface is the negative of the log of a function that may differ from the target
density by a multiplicative constant. Thus, in the notation of Sections 25.2.1
and 25.2.2, g(x) = − loge p

∗(x).
There are also n momentum variables, in the vector m, one for each of

the coordinates of x.31 The Hamiltonian, H(x,m), is a function of x and
m, and, for the cases that I’ll consider, is composed of two functions, which, in
their physical interpretation, represent respectively potential and kinetic energy.
Potential energy is equal to the elevation of the surface at the current position,
g(x), while kinetic energy, k(m), is purely a function of momentum. The total
energy of the puck is conserved as it moves, and so at any point in time t,

E = H[x(t),m(t)] = g[x(t)] + k[m(t)]

where

k(m) = 1
2m′m = 1

2

n∑
i=1

m2
i

All this assumes, recall, that the mass of the puck is 1, which slightly simplifies
the results (e.g., equating momentum to velocity).

The trajectory of the puck over “time,” t, is given by Hamilton’s equations

dm

dt
= −∂H(x,m)

∂x
= −∂g(x)

∂x
(25.12)

dx

dt
=

∂H(x,m)

∂m
= m

The Leapfrog Method

The time trajectory implied by Hamilton’s differential equations (25.12) isn’t
in general solvable analytically, but it can be accurately approximated by dis-
cretizing time in small steps, ε, and applying the following algorithm (adapted
from Neal, 2011), called the leapfrog method:32

30Because the dynamics are unchanged by rotation of the surface around the vertical axis,
the same effect can be achieved with uncorrelated Xs that have different standard deviations,
stretching the bowl in the direction of the larger standard deviation.

31My notation here is adapted to the statistical application of Hamiltonian Monte Carlo. In
physics, it’s conventional to represent the position variables by q and the momentum variables
by p.

32How good the approximation is depends on the step size and length of the trajectory.
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• Start with values of x(0) and m(0) at time t = 0, and take a half-step for
the momentum variables m,

m(ε/2) = m(0)− ε

2
× ∂g(x)

∂x
|x=x(0)

• Then for t = ε, 2 × ε, . . . , s × ε (where s is the number of steps), serially
update the position and momentum variables, using the most recent value
of each:

x(t) = x(t− ε) + ε×m(t− ε/2)

m(t+ ε/2) = m(t− ε/2)− ε× ∂g(x)

∂x
|x=x(t)

The time-length of the trajectory is thus s× ε.

To apply the leapfrog method to the illustrative bivariate normal distribu-
tions, we need the negative of the log density (ignoring the normalizing con-
stant33) and its partial derivatives (the gradient), which are simply

g(x) = 1
2 (x− µ)′Σ−1(x− µ) (25.13)

∂g(x)

∂x
= Σ−1(x− µ)

HMC Sampling

To implement HMC sampling, the leapfrog method can be used to generate
proposals to the Metropolis algorithm (Section 25.2.1).34 To generate a proposal
x∗, start at the current values xi of the variables to be sampled, and randomly
select the starting momentum in each direction—here, the momentum values
are sampled independently from the standard-normal distribution, N(0, 1). The
Metropolis acceptance ratio (Equation 25.9 on page 19) becomes

a = exp[H(xi,mi)−H(x∗,m∗)]

The acceptance ratio a depends on both the momentum variables m and the
position variables x, because both are necessary to characterize the current state
of the system, even though only the position variables are of real interest.

33For the bivariate-normal distribution, the (ignored) multiplicative normalizing constant

is
(

2π
√

detΣ
)−1

.
34The leapfrog method is symmetric (i.e., reversible), and so we can use the simpler Metropo-

lis algorithm instead of Metropolis-Hastings. We can also permit different “step” sizes for the
various elements of x, effectively multiplying the time-increment ε by scaling factors for the
position variables; this can be a useful approach when the variables have different scales (e.g.,
standard deviations). The resulting path along the surface isn’t a true Hamiltonian trajectory,
but it still provides legitimate update candidates to the Metropolis algorithm. A common al-
ternative is to complicate the Hamiltonian equations by introducing a diagonal n × n “mass
matrix” M, the diagonal entries of which reflect the scales of the variables.
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If the leapfrog method were exact, then (because of conservation of energy)
the energy for the proposal at the end of the path, H(x∗,m∗), would be exactly
equal to the energy at the beginning of the path, H(xi,mi), in which case the
acceptance ratio a = exp(0) = 1, and the proposal would always be accepted.
The acceptance ratio can only depart from 1 due to discretization error in the
leapfrog method.35 If we “tune” the step size and number of steps well, therefore,
we should expect a high acceptance rate for proposals. To achieve both a high
rate of acceptance and nearly independent draws from the target distribution,
tuning is more critical for HMC than for simpler Metropolis sampling.

I proceed to apply HMC to the bivariate-normal target distribution with

µ = [1, 2]′

Σ =

[
1 1
1 4

]
used previously in Sections 25.2.1 and 25.2.2 to illustrate the Hastings and
Gibbs algorithms, producing the following estimates, based onm = 105 sampled
values:

µ̂ = [1.001, 2.001]′

Σ̂ =

[
0.997 1.001
1.001 3.956

]
The percentage of accepted proposals, 98.7%, is much higher than for the stan-
dard Metropolis version of this example in Section 25.2.1. The density estimate
in Figure 25.15 shows that the HMC sample closely reproduces the target distri-
bution, and the sampled values are much less autocorrelated (Figure 25.16) than
the values produced by the traditional Metropolis algorithm or by the Gibbs
sampler (cf., Figures 25.7 and 25.12, respectively on pages 23 and 30).

To achieve these desirable results, I had to select by trial and error suitable
values for the step sizes and number of steps. In particular, step size was set
twice as large in the direction of X2 (which has standard deviation σ2 = 2) than
in the direction of X1 (which has standard deviation σ1 = 1.)

25.2.4 Convergence of MCMC Sampling to the Target
Distribution

In theory, Markov chains produced by MCMC sampling converge to the target
distribution as the number of simulated draws goes to infinity, but in prac-
tice several sorts of problems can occur in chains of finite length. The high-
dimensional posterior distributions associated with complex statistical models
can be much more challenging to sample effectively than a well-behaved low-
dimensional distribution like the bivariate normal or the beta. Although there

35Because, however, the leapfrog method is reversible, an error in approximating the Hamil-
tonian doesn’t invalidate the method.
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Figure 25.15 The gray dots show m = 105 values drawn by Hamiltonian Monte Carlo from the

bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2
1 = 1, σ2

2 = 4, and σ12 = 1.

The slightly irregular solid lines represent estimated density contours enclosing

50%, 95%, and 99% of the sampled points. The broken lines are the corresponding

elliptical density contours of the bivariate-normal target distribution.
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Figure 25.16 Autocorrelations of the values of (a) x1 and (b) x2 drawn by HMC applied to the

bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2
1 = 1, σ2

2 = 4, and σ12 = 1.

is no way to guarantee that MCMC samples have converged to the target distri-
bution, a variety of methods has been developed to diagnose non-convergence.
In this section, I’ll describe a simple graphical diagnostic, called a trace plot ,
along with two numeric diagnostics suggested by Gelman et al. (2013).

A trace plot is simply a line graph of each sampled quantity—typically a
parameter or a function of parameters in an application of MCMC to Bayesian
inference—versus the simulation index. If the MCMC samples have converged
to the target distribution, then the center and spread of the trace plot shouldn’t
change on average with the index.

Some prototypical examples of problematic trace plots are shown in Fig-
ure 25.17, for an imagined parameter θ:

• In (a), simulations start far from the high-density region of the target
distribution, and so a long burn-in period is required before convergence
occurs.

• In (b), successive sampled values are highly autocorrelated, and they there-
fore contain much less information about the target distribution than an
equal number of independently sampled values. As previously mentioned,
we can thin the sampled values to produce an approximately independent
sample. We can also use all of the sampled values, with the recognition
that they are not as informative as they would be were they indepen-
dent. I briefly address how to measure the amount of information in an
autocorrelated Markov chain later in this section.

• In (c), there is a trend in the average sampled value, and convergence to
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the target distribution never occurs in the course of the simulation.

• Panel (d) shows trace plots for two different Markov chains, following a
suggestion by Gelman et al. (2013, Section 11.4) to compare two or more
chains starting in different places. If the two chains both converge to the
target distribution, then their trace plots should overlap—should “mix”
well, in the jargon of MCMC; their vertical separation in the example
suggests to the contrary that the two chains are visiting different regions
of the parameter space—perhaps two separated high-density regions—and
that neither simulation has converged to the target distribution.

Figure 25.18 shows trace plots for x1 and x2 in the 105 values that I sampled
by HMC from the bivariate normal distribution with µ1 = 1, µ2 = 2, σ2

1 = 1,
σ2

2 = 4, and σ12 = 1. As I explained, this is a simple distribution from which to
sample, and so it should be no surprise that the trace plots look well-behaved.
The broken horizontal lines are drawn at the average values of x1 and x2. The
solid lines are local regressions with spans of 0.01 (see Section 18.1); the central
line in each panel is computed for all of the sampled values, and the lower and
upper lines are computed respectively for the values below and above the mean.
Both the center and spread of the simulated values appear to be constant over
the 100,000 simulated draws.

Gelman et al. (2013, Section 11.4) also suggest the following numeric proce-
dure for assessing convergence:

1. Sample several Markov chains, starting in different places (speaking to the
potential problem in Figure 25.17 (d)).

2. Discard the first half of each chain (that is, use the first half of the sampled
values as a burn-in period, to avoid the problem in Figure 25.17 (a)).

3. Split the retained values from each chain in half, treating each half as a
separate chain (to be able to detect the problem illustrated in Figure 25.17
(c)).

This procedure produces p chains, each with m sampled values. If the
chains converge to the target distribution, then they should be similar to one-
another. Gelman et al. (2013) compare the chains by a kind of analysis of
variance. Suppose that the parameter of interest is θ with sampled values
θij , i = 1, . . . ,m, j = 1, . . . , p. Define

θ·j ≡
1

m

m∑
i=1

θij

θ·· ≡
1

p

p∑
j=1

θ·j =

∑p
j=1

∑m
i=1 θij

p×m

s2
j ≡

1

m− 1

m∑
i=1

(
θij − θ·j

)2
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Figure 25.17 Potential issues in MCMC trace plots for a parameter θ: (a) burn-in required; (b)

highly autocorrelated values; (c) lack of convergence; and (d) two independent

chains that have apparently converged to different values.
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Figure 25.18 Trace plots of x1 and x2 for the 105 HMC samples drawn from the

bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2
1 = 1, σ2

2 = 4, and σ12 = 1.

The broken horizontal lines are drawn at the average values of x1 and x2. The

central solid line in each graph is from a nonparametric regression of the x-values

versus index, and the lower and upper solid lines are from nonparametric

regressions for the values below and above the mean, respectively.
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Between-chain and within-chain variation are measured respectively by

B ≡ m

p− 1

p∑
j=1

(
θ·j − θ··

)2
W ≡ 1

p

p∑
j=1

s2
j

An estimate of the posterior variance of θ is then

V̂ (θ) =
m− 1

m
W +

1

m
B

Finally, compute the diagnostic statistic

R̂ =

√
V̂ (θ)

W

called the potential scale-reduction factor because it estimates how much the
dispersion of the posterior distribution of θ would decline if there were an infinite
number of MCMC samples. R̂ substantially larger than 1 (say, exceeding 1.1)
suggests that the several chains are heterogeneous, indicative of a convergence
problem.36

I applied Gelman et al.’s procedure to the HMC samples drawn from the
bivariate-normal distribution with µ1 = 1, µ2 = 2, σ2

1 = 1, σ2
2 = 4, and σ12 = 1,

sampling a second Markov chain of 105 values, and splitting each chain in half;
I didn’t bother with a burn-in period for this example. Thus, p = 4 and m =
5× 104. The values of R̂ for x1 and x2 were both equal to 1 to several places to
the right of the decimal point, consistent with convergence of the chains to the
target distribution.

Gelman et al. (2013, Section 11.5) also suggest a measure of the effective
sample size for a set of autocorrelated Markov chains. Consider p chains for a
parameter θ, each of size m, thus comprising p×m non-independent draws from
the target distribution, where θij is the ith draw in the jth chain. Adapting
Equation 25.11 (on page 20) to pool the sampled values across the several chains,
the estimated autocorrelations are

rt =

∑p
j=1

∑m
i=t+1(θij − θ··)(θi−t,j − θ··)∑p
j=1

∑m
i=1(θij − θ··)2

, t = 1, 2, . . .

where (as above)

θ·· =

∑p
j=1

∑m
i=1 θij

p×m
36Brooks and Gelman (1997) introduce an improved estimate of R, but the details need not

concern us here.



42 CHAPTER 25. BAYESIAN ESTIMATION OF REGRESSION MODELS

Then (simplifying slightly), the effective sample size is an inverse function of
the autocorrelations,

meff ≈
p×m

1 + 2
∑t′

t=1 rt

where t′ is picked so that the rt for t > t′ are negligibly small.
Continuing with the HMC bivariate-normal example, the autocorrelations

computed from the p = 4 pooled chains are all small (cf., Figure 25.16 on
page 37)—for example, r1 = −0.0018 and r2 = 0.1235 for both x1 and x2—and
so the effective sample sizes based (arbitrarily) on the first 10 autocorrelations
are, respectively, meff ≈ 173, 160 for x1 and meff ≈ 171, 633 for x2, not much
less than the p×m = 4× 50, 000 = 200, 000 draws from the target distribution.

In theory, Markov chains produced by MCMC sampling converge to the target
distribution as the number of simulated draws goes to infinity, but in practice sev-
eral sorts of problems can occur in chains of finite length. Convergence diagnostics
help to determine whether MCMC samples adequately characterize a target dis-
tribution. In formulating these diagnostics, it helps to sample and compare two or
more independent Markov chains and to discard the initial samples of each (e.g.,
the first half) as a “burn-in period.”

• A trace plot is a line graph of a sampled quantity—typically a parameter
or a function of parameters—versus the simulation index. If the MCMC
samples have converged to the target distribution, then the center and
spread of the trace plot shouldn’t change on average with the index, and
trace plots for independent Markov chains should be similar.

• The potential scale-reduction factor R̂ measures the similarity of two or
more Markov chains for a sampled quantity such as a parameter. If the
chains have converged, then R̂ should be close to 1.

• The effective sample size meff ≈ pm/
(

1 + 2
∑t′

t=1 rt

)
measures the amount

of information about a sampled quantity contained in the MCMC samples,
where p is the number of independent chains employed, m is the number of
samples retained from each chain, rt is the estimated autocorrelation of the
sampled values at lag t, and t′ is selected so that rt is negligible for t > t′.
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25.3 Bayesian Estimation of Linear and General-
ized Linear Models

As I have explained, Bayesian statistical inference requires a probability model
for the data, from which the likelihood for the observed data is derived, and a
prior distribution for the parameters of the model. Combining the likelihood
and the prior produces the posterior distribution of the parameters, on which
inference is based. Both the normal linear model, described in Part II, and
traditional generalized linear models, such as the logit model and the Poisson-
regression model, described in Part IV, provide clearly defined probability mod-
els for the data, and so the principal open task in applying the machinery of
Bayesian inference to these models is to specify the prior distribution of the
parameters of the model.

25.3.1 The Normal Linear Model
Previously (e.g., in Section 6.2.1), I wrote the normal linear model as

Yi = α+ β1xi1 + β2xi2 + · · ·+ βkxik + εi

where εi ∼ N(0, σ2
ε) and εi, εi′ are independent for i 6= i′. For our current

purposes, I’ll equivalently specify the conditional distribution of the data Y
directly as

Yi|xi1, xi2, . . . , xik ∼ N(α+ β1xi1 + β2xi2 + · · ·+ βkxik, σ
2
ε) (25.14)

Yi, Yi′ are independent for i 6= i′

Writing statistical models in this form will be convenient in more complex ap-
plications, such as the mixed-effects models considered in Section 25.4.

With the likelihood of the data in hand, we next require the joint prior
distribution of the k+ 2 parameters of the model, α, β1, β2, . . . , βk, σ

2
ε , which is

typically addressed by specifying independent prior distributions for the various
parameters.37

For concreteness, let’s focus on Duncan’s occupational prestige regression
(introduced in Section 5.2 and discussed a several points in the text). Recall
that the response variable in Duncan’s regression is the prestige of each of 45
U. S. occupations, circa 1950, measured as the percentage of ratings of “good’
or better in a national survey. There are two explanatory variables in Duncan’s
regression—the educational and income levels of the occupations, measured re-
spectively as the percentage of high-school graduates in the occupation and the
percentage of individuals in the occupation earning $3500 or more, both from
the 1950 U. S. Census.

37We know (see, e.g., Section 9.4.4) that when the regressors in a linear model are correlated,
so are the estimated regression coefficients, and consequently independent prior distributions
for regression coefficients aren’t generally credible. It’s not obvious, however, how one would
go about specifying non-independent priors for the parameters of the model. See Section 25.5
and footnote 40 for further discussion of this point.
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Table 25.1 Least-Squares and Bayesian Estimates for Duncan’s Occupational

Prestige Regression

Estimated Parametera (Standard Errorb)
Method α/α∗c β1 β2 σε
Least-Squares −6.06 0.599 0.546 13.4

(4.27) (0.120) (0.098)
Bayes, Flat Priors −6.10 0.599 0.547 13.6

(4.37) (0.123) (0.101)
R̂ 1.000 1.000 1.000 1.000
meff 11, 773 10, 213 9824 11, 709
Bayes, Vague Priors 47.71 0.595 0.546 13.4

(1.98) (0.121) (0.099)
R̂ 1.000 1.000 1.000 1.000
meff 18, 513 12, 118 11, 969 16, 722
a,bFor Bayesian estimates, posterior mean and standard deviation.
c α∗ with centered xs for the Bayes estimates with vague priors, otherwise α.

I previously fit Duncan’s model by least-squares regression (see Sections 5.2.1
and 6.2.2). Table 25.1 compares the least-squares estimates of the regression
coefficients, their standard errors,38 and the error standard deviation to two
sets of Bayesian estimates: one produced by specifying flat independent prior
distributions for all of the parameters of the model, and the other produced by
specifying vaguely informative independent prior distributions for the parame-
ters, both to be explained presently. The table also shows the R̂ convergence
diagnostic for each Bayesian estimate, all of which round to 1.000, along with the
effective sample size, meff . Trace plots for the two sets of Bayesian parameter
estimates were unremarkable and aren’t shown.39

The flat improper priors employed for the first set of Bayesian estimates are

38In the case of the Bayesian estimates, the “standard errors” are the standard deviations
of the the posterior distributions of the parameters—“standard error” is strictly speaking a
familiar frequentist term for the estimated standard deviation of the sampling distribution of
a statistic.

39These and all of the Bayesian estimates in the remainder of this chapter were computed
using Stan. For each model, I sampled four independent chains, each of length 10,000, with the
first 5000 iterations used for burn-in and no thinning of the remaining 5000 iterations; thus,
4 × 5000 = 20, 000 sampled values of the parameters were retained in each case. I generally
omit reporting R̂, meff , and trace plots in the subsequent examples in this chapter, because,
unless indicated to the contrary, all of the diagnostics are satisfactory.

A word about terminology: The Stan software developers prefer to use the term warm-up
to burn-in for the initial, discarded, MCMC samples because these samples are partly used
to tune the HMC sampling algorithm to make it more efficient. In the interest of simplicity,
I’ll continue to use the term “burn-in” here.
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straightforward for the three regression coefficients:

α ∼ Unif(−∞,∞)

β1 ∼ Unif(−∞,∞)

β2 ∼ Unif(−∞,∞)

The error standard deviation σε is non-negative, and so I used a flat prior for
its log: loge σε ∼ Unif(−∞,∞).

The second set of Bayesian estimates, employing vaguely informative priors,
requires more explanation:

• I centered the explanatory variables, income and education, to 0 means,
x∗i1 = xi1 − x1, x∗i2 = x2 − xi2, so that the regression model becomes
Yi|x∗i1, x∗i2 ∼ N(α∗ + β1x

∗
i1 + β2x

∗
i2, σ

2
ε). That’s helpful for thinking about

the prior distribution of the intercept, because now the intercept α∗ is
interpretable as the expected value of Y when the xs are equal to their
means (and in least-squares regression α̂∗ would simply be the uncondi-
tional mean of Y ).40

I then used the prior distribution α∗ ∼ N(50, 152), effectively confining
α∗ (which is a percentage) between 5 and 95—that is, ±3 prior standard
deviations around 50. Recall that almost all—99.7%—of the density of
a normal distribution is within 3 standard deviations of its mean, and
that 95% and 68% of the density lie respectively within 2 and 1 standard
deviations of the mean.41

• The explanatory variables x1 and x2 are also percentages, and I set the
prior distributions of the corresponding regression coefficients to β1 ∼
N(0, 1) and β2 ∼ N(0, 1), effectively restricting these coefficients to the
range between −3 and 3. A 3-percent change in prestige for a 1-percent
increase in income or education would be a very large effect.

• Finally, I specified loge σε ∼ N(0, 1.52), which constrains the error stan-
dard deviation to lie approximately between e−3×1.5 ≈ 0.01 and e3×1.5 ≈
90. Recall that σε is on the same percentage scale as Y .

40A careful reader may notice that centering the explanatory variables at their sample
means requires looking at the data to help construct a prior distribution for the intercept, a
procedure that I’ve generally tried to avoid. I could instead center the xs at fixed values, such
as 50%. One defense of centering at the sample means is that in this example, and typically,
we’re not terribly interested in the intercept and simply want to develop a reasonable prior
for it. More deeply, however, we might find it legitimate to condition on the distribution of
the xs, as we do in classical inference for regression. That raises the possibility of using the
joint distribution of the xs for other purposes, such as to construct priors for the correlations
among the regression coefficients.

41Because the normal distribution is unbounded below and above, it’s possible—but very
unlikely—to sample a value outside the range 0 to 100. Moreover, the normal linear model,
whether estimated by least-squares or by Bayesian methods, doesn’t constrain Y to lie between
0 and 100.
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Here is a table summarizing the normal priors:

Prior SDs −3 −2 −1 1 2 3
Centered Intercept (α∗) 5 20 35 65 80 95
Income Coefficient (β1) −3 −2 −1 1 2 3
Education Coefficient (β2 ) −3 −2 −1 1 2 3
Error Standard Deviationa (σε) 0.01 0.05 0.22 4.5 20.9 90
aShowing eZ×1.5, where Z is −3,−2,−1, 1, 2, 3.

Alternatively, we can simply graph the prior distributions as in Figure 25.19:
Panel (a) shows the prior for the intercept α∗ of the centered model; panel (b)
shows the common prior for the regression coefficients β1 and β2 of income and
education; and panels (c) and (d) show the prior for the error standard deviation
σε—on the loge σε scale in (c) (with the corresponding σε scale at the top of
the graph) and the σε scale in (d).

Some comments about the prior distributions:

• Vaguely informative priors like these are common in applied Bayesian
statistical modeling, but while the priors that I specified are reasonable,
they don’t reflect my honest prior beliefs about the regression coefficients.

• In particular, before examining the data (which is in itself an exercise in
imagination because I’m familiar with Duncan’s data and regression), I’d
strongly expect both the income coefficient and the education coefficient
to be positive, yet, as is the norm in applications, the priors for these
coefficients are centered at 0. The result is that the posterior estimates of
the regression coefficients tend to “shrink” towards 0 (as in ridge regression,
discussed in Section 13.2.3).

• I believe that this argument applies more generally to vaguely informative
priors for regression coefficients: When researchers include an explana-
tory variable in a regression equation it’s generally because they expect
its coefficient to be nonzero and, typically, expect the coefficient to have
a particular sign (positive or negative). To specify a prior distribution for
the coefficient centered at 0 contradicts genuine prior belief and is there-
fore fundamentally non-Bayesian—at least from the researcher’s subjective
point of view. Perhaps we can rescue a Bayesian interpretation of vaguely
informative priors centered at 0 by ascribing them to a hypothetical critic
who is skeptical of the researcher’s hypothesis but who is uncertain in his
or her skepticism.42

• Ironically, the justification for vague priors like the ones employed here
often appeals to frequentist properties of the resulting estimators, such as
robustness—the vague priors are not very restrictive but they do rule out
wild estimates of the regression coefficients—and by shrinking regression
coefficients towards 0 may improve the mean-squared error of estimates,
a process termed regularization.

42This last point of interpretation was suggested to me by Georges Monette.
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Figure 25.19 Vaguely informative priors for the parameters of Duncan’s occupational prestige

regression model: (a) prior for the intercept α∗ of the centered model; (b) common

prior for the regression coefficients β1 and β2 of income and education; (c) and (d)

prior for the error standard deviation σε.
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• I used—and in the remainder of this chapter, I will continue to use—
normal priors simply because of their familiarity: That is, I expect that
the reader will have developed intuition about the family of normal distri-
butions. Other distributional choices are certainly possible, and arguably
more reasonable.43

• As expected, the flat priors produce Bayesian estimates similar to the
least-squares estimates,44 but in this case, and despite the small sample
size of Duncan’s data set (n = 45), the same is true of the Bayesian
estimates produced by the vaguely informative priors.

The normal linear regression model provides a probability model for the data
from which the likelihood can be calculated:

Yi|xi1, xi2, . . . , xik ∼ N(α+ β1xi1 + β2xi2 + · · ·+ βkxik, σ
2
ε)

Yi, Yi′ are independent for i 6= i′

To obtain Bayesian estimates of the parameters of the regression model,
α, β1, . . . , βk, and σε, we require prior distributions for the parameters. One ap-
proach is to use vaguely informative normal priors, remembering that almost all—
99.7%—of the density of a normal distribution is within 3 standard deviations
of its mean, and that 95% and 68% of the density lie respectively within 2 and
1 standard deviations of the mean. In this approach, the priors for the various
parameters are specified separately and are treated as independent.
The standard deviation of the errors, σε, can’t be negative, and so we can use a
normal prior for its log. Because the intercept α is often far from the observed
data, in specifying a prior distribution for α, it often helps first to center the xs
at their means or at other meaningful values.
Once the regression model and the priors are specified, the joint posterior distri-
bution of the parameters is approximated by Markov-chain Monte Carlo.

25.3.2 Generalized Linear Models
Bayesian estimation of generalized linear models is largely similar to Bayesian
estimation of linear models. As in the preceding section, it’s helpful to focus

43For example, an exponential prior could be used for the error standard deviation. See the
references given at the end of the chapter for extensive discussions of prior distributions.

44Bayesian estimates with flat priors can differ from the MLEs because of simulation error—
that is, the posterior distribution is only approximated by MCMC—but even if the posterior
produced by MCMC were exact, the MLE would correspond to the posterior mode, not to
the posterior mean, and the latter is used for the Bayesian point estimates reported here.
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on an example: Cowles and Davis’s logistic regression relating volunteering for
a psychological experiment to sex, extraversion, and neuroticism (introduced in
Section 17.1; see in particular Table 17.1 on page 505). To recapitulate briefly,
Cowles and Davis (1987) asked 1421 students in an introductory psychology
class whether they were willing to volunteer for an experiment. Sex was coded
as either female or male, and the two personality dimensions, extraversion and
neuroticism, were measured on 0-to-24 scales.

To facilitate specification of vaguely informative prior distributions for the
logistic-regression coefficients, I’ll write the logistic-regression model as

Yi|xi1, xi2, xi3 ∼ Bernoulli(πi)

Yi, Yi′ independent for i 6= i′

πi =
1

1 + e−ηi

ηi = α+ β1xi1 + β2(xi2 − 12) + β3(xi3 − 12) + β4(xi2 − 12)(xi3 − 12)

where

• the response Y is coded 1 for those who volunteered and 0 otherwise;

• π = Pr(Y = 1) is the probability of volunteering;

• x1 is coded − 1
2 for males and 1

2 for females, so that β1 represents the
difference in volunteering between females and males (on the logit scale)
at fixed levels of extraversion and neuroticism;

• x2, extraversion, and x3, neuroticism, are each centered at 12—the mid-
point of their scales;

• (x2 − 12)(x3 − 12) is an interaction regressor; and

• the intercept α consequently represents the level of volunteering (on the
logit scale) averaged across females and males when extraversion and neu-
roticism are at the centers of their scales.

When I fit a logistic regression by maximum likelihood to the Cowles and
Davis volunteering data, as reported in Table 17.1, extraversion and neuroticism
weren’t centered, and sex was represented by a dummy regressor, coded 0 for
females and 1 for males. As I mentioned, centering the numeric explanatory
variables makes it easier to specify prior distributions for the regression coef-
ficients (as I’ll show presently). Coding the regressor for sex as − 1

2 ,+
1
2 has a

different, and more fundamental motivation.
When a generalized linear model is fit by maximum likelihood, we know

that decisions such as the selection of a baseline category for a set of dummy
regressors, or centering a numeric explanatory variable at its mean or another
value, are inessential, in the sense that the regression surface fit to the data
doesn’t depend on these arbitrary choices. The situation can be more complex,
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Table 25.2 Maximum-Likelihood and Bayesian Estimates for Cowles and Davis’s Logistic

Regression.

Estimated Parametera (Standard Errorb)
Method α β1 β2 β3 β4

Maximum Likelihood −0.382 0.247 0.0642 0.0081 −0.00855
(0.056) (0.112) (0.0144) (0.0115) (0.00293)

Bayes, Flat Priors −0.385 0.247 0.0645 0.0081 −0.00859
(0.057) (0.112) (0.0143) (0.0117) (0.00294)

Bayes, Vague Priors −0.380 0.245 0.0597 0.0074 −0.00858
(0.056) (0.111) (0.0138) (0.0115) (0.00295)

a,bFor Bayesian estimates, posterior mean and standard deviation.

however, when we specify prior distributions for regression coefficients to obtain
Bayesian estimates.

Suppose, for example, that I were to set the regressor x1 for sex to 0 for
females and to 1 for males, and were to specify prior distributions of the form
α ∼ (a, s2

0) and β1 ∼ N(0, s2
1) for the intercept and sex coefficient, where a,

s2
0, and s2

1 are specific numbers, representing the prior mean of α and the prior
variances of α and β1. Then the prior distribution of the intercept for the
baseline female group would be α ∼ N(a, s2

0), while that for the male group
would be (α+β1) ∼ N(a, s2

0+s2
1). That is, the symmetry we expect in maximum-

likelihood estimation induced by the arbitrary choice of baseline level for the
sex dummy regressor is lost in Bayesian estimation, where the prior variance of
the intercept for males is necessarily larger than that for female.

In contrast, coding the regressor for sex as − 1
2 ,+

1
2 preserves symmetry in

the prior distributions of the intercepts for the two groups: Using the same
priors as before for the two parameters, α ∼ N(a, s2

0) and β1 ∼ N(0, s2
1), the

prior distributions of the intercepts for females and males now both have the
same variance; the priors for the intercepts are (α− 1

2 ×β1) ∼ N(a, s2
0 + 1

4 × s
2
1)

for females and (α + 1
2 × β1) ∼ N(a, s2

0 + 1
4 × s

2
1) for males. I’ll return to this

issue in Section 25.4, where I’ll address it in more detail.
Table 25.2 shows three sets of estimated parameters and standard errors

(or posterior standard deviations) for the Cowles and Davis logistic regression:
maximum-likelihood estimates, Bayesian estimates with flat priors for the re-
gression coefficients, and Bayesian estimates with vaguely informative priors.
As expected, the ML estimates and the Bayesian estimates with flat priors are
virtually identical; the results for the Bayesian estimates with vague priors are
also very similar to the ML estimates. An effect plot for Cowles and Davis’s
logistic regression estimated by maximum likelihood appears in Figure 17.2 (on
page 506).

As elsewhere in this chapter, the vague priors used here are normal dis-
tributions centered at 0, and producing them for Cowles and Davis’s logistic



25.3. LINEAR AND GENERALIZED LINEAR MODELS 51

Table 25.3 Summaries of Vaguely Informative Prior Distributions for the Parameters of

Cowles and Davis’s Logistic Regression

Prior SDs, Z
−3 −2 −1 1 2 3

π = 1/[1 + e−Z×SD(α)] .047 .12, .27 .73 .88 .95
eZ×SD(β1) 0.050 0.13 0.37 2.7 7.4 20
e24×Z×SD(βj), j = 2, 3, 4 0.027 0.091 0.30 3.3 11 37

regression requires some thought:

• Setting α ∼ N(0, 1) effectively confines the logit of volunteering at cen-
tral values of the personality dimensions to lie between −3 and 3, which
translate respectively to probabilities of .05 and .95, a large range but
certainly suitable for a probability.45 Also see Table 25.3 for the implied
probabilities of volunteering at ±1, 2, and 3 prior standard deviations, and
Figure 25.20 (a) for a graph of the prior for α.

• Recall that an exponentiated logistic-regression coefficient is interpretable
as a multiplicative effect on the odds. As explained, β1 is the difference in
volunteering on the logit scale between females and males, and so eβ1 is
the multiplicative sex effect. Adopting the prior distribution β1 ∼ N(0, 1)
corresponds to multiplicative effects of exp(−3× 1) ≈ 0.05 at 3 standard
deviations below the prior mean of 0 and exp(3 × 1) ≈ 20 at 3 standard
deviations above the prior mean, which seem reasonable, if broad, prior
constraints. Again, more detail is given in Table 25.3 and Figure 25.20
(b).

• The coefficients of x2 (extraversion) and x3 (neuroticism) are harder to
address. Each variable has a range of 24 units.

Let’s consider the extraversion coefficient, β2, and, for the moment, ig-
nore the interaction. Because extraversion and neuroticism are centered
at 12, β2 is the extraversion logit slope when neuroticism is at the mid-
dle of its scale. Employing the normal prior β2 ∼ N(0, 0.052) implies
that the multiplicative effect of extraversion over the 24 units of its scale
is effectively constrained to lie between exp(24 × −3 × 0.05) ≈ 0.03 and
exp(24 × 3 × 0.05) ≈ 37, which once more seem reasonably vague con-
straints.

Similar reasoning applies to neuroticism, and so β3 ∼ N(0, 0.052). As
before, more information about these priors appears in in Table 25.3 and
Figure 25.20 (c).

45As it turned out, 42% of the students volunteered to participate in an experiment.
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p(α)

π

(a)

β1

−3 −2 −1 0 1 2 3

0.05 0.14 0.37 1 2.72 7.39 20.09
p(β1)

exp(β1)
(b)

βj, j = 2,3,4

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0.03 0.09 0.3 1 3.32 11.02 36.6p(βj)

exp(24 × βj)
(c)

Figure 25.20 Vaguely informative priors for the coefficients of the logistic-regression model fit to

Cowles and Davis’s data on volunteering for a psychological experiment.
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• Finally, the coefficient β4 of the interaction regressor (x2− 12)(x3− 12) is
the change in the slope of x1 (on the logit scale) associated with a 1-unit
increase in x2 (or the change in the slope of x2 for a 1-unit increase in x1).
Over the whole 24-unit range of x1, the multiplicative change in its slope
is exp(24 × β4), and so setting the prior distribution to β4 ∼ N(0, 0.052)
restricts the multiplicative interaction to the range 0.03 to 37 (also see
Table 25.3 and Figure 25.20 (c)).

Bayesian estimation of generalized linear models is very similar to Bayesian esti-
mation of linear models: The GLM provides a probability model for the data (see
Section 15.1):

ηi = α+ β1xi1 + · · ·βkxik
µi = g−1(ηi)

Yi|xi1, . . . , xik ∼ p(µi, φ)

where the conditional distribution p(µi, φ) of the response Yi is a member of an
exponential family, with expectation µi and dispersion parameter φ (which recall
is set to 1 in the binomial and Poisson families).
Once prior distributions for the parameters of the model are specified, their pos-
terior distribution can be approximated by MCMC.

Bias Reduction in Logistic Regression

An interesting application of Bayesian ideas is to bias reduction in the estimation
of generalized linear models, specifically in logistic regression (another context
in which a frequentist criterion—bias—is used to justify a Bayesian estimator).
Maximum-likelihood estimators are asymptotically unbiased (see, e.g., on-line
Appendix Section D.6.2), but they can be biased in small samples. In logistic
regression, small-sample bias can be acute when the probability of the response
is close to 0 or 1.

An especially problematic data pattern for logistic regression is complete
separation, where a linear function of the regressors in the model partitions the
data into disjoint regions of 0s (i.e., “failures”) and 1s (“successes”), as illustrated
with artificial data for two xs in Figure 25.21.46 For the case depicted in the
graph, the maximum-likelihood estimates of β1 and β2 in the logistic regression
of Y on the two xs are both −∞, and if you try to estimate the logistic regression
model with statistical software, the computation will fail to converge.

46There are n = 100 points in this artificial data set, with each of x1 and x2 generated by
sampling independently from the uniform distribution Unif(−1, 1). Then Y = 1 for x1+x2 < 0
(i.e., below the −45◦ line in the graph) and Y = 0 otherwise.
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Figure 25.21 Complete separation for a binary response variable; the filled points represent

Y = 1 (“successes”) and the hollow points Y = 0 (“failures”).
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Table 25.4 Maximum-Likelihood and Bayesian Estimates of a Logistic Regression Model with

Complete Separation of the Data (see Figure 25.21).

Estimated Parameter (Standard Errora)
Method α β1 β2

Maximum Likelihood 0 −∞ −∞
(—) (—) (—)

Firth (Bayes, Jeffreys Prior) 0.343 −31.0 −31.8
(0.869) (14.0) (13.9)

Bayes, Diffuse Normal Prior 0.328 −30.1 −31.7
(0.852) (8.5) (8.7)

aFor Bayesian estimates, posterior standard deviation.

Firth (1993) (also see Kosmidis and Firth, 2009, 2021) showed that substan-
tial bias reduction in estimating the logistic regression model under difficult cir-
cumstances can be achieved by employing the Jeffreys prior, and he suggested an
efficient method for computing the resulting estimates. Firth’s estimates for the
data in Figure 25.21 are shown in Table 25.4, along with similar estimates (but
smaller posterior standard deviations, labeled “standard errors” in the table)
produced by using diffuse normal priors for the logistic-regression coefficients:

α ∼ N(0, 202)

β1 ∼ N(0, 202)

β2 ∼ N(0, 202)

Firth (1993) showed that substantial bias reduction in estimating the logistic
regression model under difficult circumstances can be achieved by employing the
Jeffreys prior. An especially problematic data pattern for logistic regression to
which Firth’s estimator is applicable is complete separation, where a linear func-
tion of the regressors in the model partitions the data into disjoint regions of 0s
and 1s. In this case, maximum-likelihood estimation of the logistic regression coef-
ficients produces one or more infinite estimates, while Firth’s method yields finite
estimates.
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25.4 Mixed-Effects Models
A common application of Bayesian estimation is to mixed-effects models.47 As
in the preceding section on linear and generalized-linear models, I’ll focus on a
representative application introduced earlier in the text, Davis et al.’s (2005)
study of the relationship between the developmental trajectory of exercise and
eating disorders in female adolescents (discussed in Section 23.4). Recall that
Davis et al. collected retrospective data on weekly hours of exercise, at intervals
of 2 years starting at age 8 and ending at the age of hospitalization, for 138
teen-aged female patients who were treated for eating disorders; parallel data
were collected for 93 control subjects who did not suffer from eating disorders
but were otherwise generally similar to the patients.

The object of the research was to compare the typical exercise trajectories
of the patients and the controls. To that end, I fit several mixed-effects models
of varying complexity to Davis et al.’s data. An initial model, with potentially
different fixed-effects intercepts and age slopes for the two groups (patients and
controls), along with random effects for person-specific intercepts and slopes,
appears in equation and tabular form on page 721, with estimates by restricted
maximum likelihood (REML). The model is parametrized so that the intercept
represents average exercise in the control group at age 8 (i.e., the start of the
study). The response variable in the model, hours of weekly exercise, is log-
transformed using logs to the base 2, after adding 5 minutes to weekly exercise
to avoid taking the log of 0. The fixed-effects part of the model—averaging over
the random effects and adjusting the notation slightly to conform to usage in
the current chapter—is (adapting Equation 23.11)

E(Yij) = β0 + β1x1i + β2x2ij + β3x1ix2ij (25.15)

where Yij is log-exercise for individual i on the jth measurement occasion; x1i is
a dummy regressor coded 0 for individuals i in the control group and 1 for those
in the patient group; and x2ij is individual i’s age on measurement occasion j,
less 8 years.

When we specify and interpret linear models fit by least squares or gener-
alized linear models fit by maximum likelihood, we rely on certain symmetries
and invariances. For example, the baseline level for a dummy regressor or set
of dummy regressors is an inessential choice, in that the regression surface fit to
the data doesn’t depend on the baseline level selected. Moreover, as long as we
use a complete set of contrasts to represent a factor in a linear or generalized-
linear model, the details of the coding employed are inessential, and so we can

47A Bayesian might object to the term “mixed effects,” which is rooted in the frequentist
distinction between fixed effects, which are conceptualized as parameters with fixed though
unknown values, and random effects (e.g., individual-specific regression coefficients), which
are random variables whose variance and covariance components are parameters. Bayesians
treat all unknown quantities as random variables. A Bayesian, therefore, might emphasize
the application, and term such a model “hierarchical,” “multilevel,” or “longitudinal” rather
than calling it a “mixed-effects” model. The key point, however, is that the random effects are
expressed in terms of more fundamental parameters, the variance and covariance components,
and so I continue to find the distinction between fixed and random effects useful.
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use deviation regressors or arbitrary contrasts in lieu of dummy regressors (see
Sections 8.2.4, 8.5, and 9.1.2). Similarly, when we fit a linear or generalized
linear model in which there are higher-order terms, such as interactions, details
of model specification such as contrast coding for factors and centering numeric
explanatory variables are inessential as long as the model conforms to the prin-
ciple of marginality (discussed in Section 7.3.2). These observations extend to
linear and generalized-linear mixed models fit by ML or REML, and so, in the
current example, it doesn’t matter that the control group rather than the pa-
tient group is selected as the baseline: The model implies two regression lines,
one for the control group and the other for patients, potentially with different
intercepts and slopes. The lines fit don’t depend on which group is selected as
the baseline for the group dummy regressor, nor on centering age at 8 rather
than at some other value.

Once we specify prior distributions for regression parameters, however, and
proceed to estimate a model by Bayesian methods, these symmetries and in-
variances generally no longer hold. We’re already familiar with parametrizing a
Bayesian regression model to facilitate the specification of priors. For example,
in specifying a normal linear model for Duncan’s occupational prestige regres-
sion in Section 25.3.1, I centered the numeric explanatory variables income and
education to 0 means to simplify the specification of a prior distribution for the
intercept in the regression model.

The issue raised here is more general, however. I made a similar, if less
general, point in Section 25.3.2, in connection with selecting the baseline level for
a dummy regressor in Bayesian estimation of a logistic-regression model where
the dummy regressor entered the regression equation additively. Consider, now,
the fixed effects in Equation 25.15, and suppose that, as described, the baseline
level for the dummy regressor x1 is the control group. We proceed to specify
independent priors for the regression coefficients, say

β0 ∼ N(0, s2
0)

β1 ∼ N(0, s2
1)

β2 ∼ N(0, s2
2)

β3 ∼ N(0, s2
3)

where the s2
js are specific numbers representing prior variances. Then the inter-

cepts and slopes of the regression lines for the two groups have different prior
variances. In particular, for the control group, the prior variance of the in-
tercept is V (β0) = s2

0 and the prior variance of the age slope is V (β2) = s2
2,

while the corresponding variances for the patient group are necessarily larger,
V (β0 + β1) = s2

0 + s2
1 and V (β2 + β3) = s2

2 + s2
3, respectively. Notice that

this issue isn’t specific to mixed-effects models and would apply to linear and
generalized-linear models as well.

As far as I’m aware, this isn’t a commonly discussed problem, even though
it must occur frequently in applications of Bayesian regression modeling. McEl-
reath (2020, Section 8.1) raises the problem (which is how I became aware
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of it), but his solution is, I believe, insufficiently general: McElreath suggests
parametrizing the model so that distinct intercepts and slopes for the two groups
appear directly in the model, in which case E(Yij) = β0g +β1gx1ij , where g = 1
for individuals in the control group and 2 for those in the patient group, and x1

is now age. We would proceed to specify priors for β01, β02, β11, and β12 (and
would probably make the prior variances of the two intercepts the same, and
the prior variances of the two slopes the same). This solution is perfectly fine
for simple models, but breaks down, for example, when there are higher-order
interactions.

A general solution to this problem is complex (see the starred paragraph
below), but the current example suggests how we might proceed. Instead of
using 0/1 dummy-regressor coding suppose we code the contrast xi1 = − 1

2
for individuals i in the control group and + 1

2 for those in the patient group.
We retain the specification E(Yij) = β0 + β1x1i + β2x2ij + β3x1ix2ij , and so
β1 still captures the difference in intercepts between the patient and control
groups, while β3 captures the difference in slopes. Now, however, E(Yij) =
(β0− 1

2×β1)+(β2− 1
2×β3)x2ij for individuals in the control group; E(Yij) = (β0+

1
2 ×β1)+(β2 + 1

2 ×β3)x2ij for those in the patient group; and the corresponding
prior variances of the intercepts and slopes in the two groups are the same:
V (β0 − 1

2 × β1) = V (β0 + 1
2 × β1) = s2

0 + 1
4 × s

2
1 for the intercepts; and V (β2 −

1
2 × β3) = V (β2 + 1

2 × β3) = s2
2 + 1

4 × s
2
3 for the slopes.

∗More generally, if a factor has m ≥ 2 levels, we require m − 1 regressors
to represent it in a linear or generalized linear model. As I have explained,
choice of the specific set of regressors employed is inessential in least-squares or
maximum-likelihood estimation, but not in Bayesian estimation. To achieve the
symmetry and invariance that we require in Bayesian estimation, we may use
a set of m− 1 regressors that are (1) orthogonal to the constant regressor, and
(2) orthonormal in their row-basis. For m = 2 levels, this produces a regressor

coded −
√

1
2 ,
√

1
2 (or its reflection,

√
1
2 ,−

√
1
2 ), which is simply a multiple of the

solution that I employ in the current application, that is, − 1
2 ,+

1
2 . For m = 3,

the row-basis of the regressors takes the form
√

1
2 −

√
1
6

0 2
√

1
6

−
√

1
2 −

√
1
6


up to a permutation of the rows and reflections of the columns. In the general
case, we can construct a suitable (m − 1)-column row-basis for the contrast
matrix by generating an arbitrary set of m − 1 orthogonal contrasts, and then
normalizing the columns to unit lengths (or to other fixed common lengths).
This approach is particularly compelling for independent normal priors, which
are completely specified by their means and variances.

With these preliminaries out of the way, let’s formulate a Bayesian linear
mixed-effect model for the Davis et. al data. As usual, Bayesian analysis begins
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with specification of a probability model for the observed data, for which I’ll
retain the notation of the Laird-Ware form of the linear mixed-effects model
(introduced in Section 23.2):48

Yij |xi1, xi2 ∼ N(µij , σ
2
ε)

Yij , Yi′j′ independent for i 6= i′ or j 6= j′

µij = β0 + β1x1i + β2x2ij + β3x1ix2ij +B0i +B1ix2ij

bi ≡ [B0i, B1i]
′ ∼ N2

(
[0, 0]′, Ψ

2×2

)
bi,bi′ independent for i 6= i′

(25.16)

• the Yij are the values of the response, log-exercise, for individual i on occa-
sion j, and are normally and independently distributed with expectation
µij and common error variance σ2

ε ;

• the βs represent fixed effects;

• x1i is a contrast regressor coded 1
2 for patients and − 1

2 for control subjects;

• x2ij is individual i’s age in years, starting at age 8, on measurement oc-
casion j (i.e., ageij − 8);

• x1ix2ij is therefore an interaction regressor, permitting different fixed-
effect age slopes in the patient and control groups;

• B0i is the deviation of the intercept for individual i from the fixed-effects
intercept β0 − 1

2 × β1, for the control group, or from β0 + 1
2 × β1, for the

patient group; and

• B1i is the deviation of the age slope for individual i from the fixed-effects
slope β2− 1

2×β3, for the control group, or from β2 + 1
2×β3, for the patient

group.

The covariance matrix Ψ of the random effects bi depends on three fundamental
parameters, which I’ll take as SD(B0i) ≡ ψ0, SD(B1i) ≡ ψ1, and cor(B0i, B1i) ≡
ρ01, so that

Ψ =

[
ψ2

0 ρ01ψ0ψ1

ρ01ψ1ψ0 ψ2
1

]
(25.17)

Table 25.5 shows three sets of estimates for this model: Maximum-likelihood
estimates, based only on the data;49 Bayesian estimates based on flat priors; and

48If you’re unfamiliar with matrix notation, just think of bi as a list of the two person-
specific regression coefficients for individual i, and Ψ as a table of the variance-covariance
components (see Equation 25.17).

49The ML estimates in Table 25.5 are similar, but not identical, to the REML estimates
given in the table on page 721; note as well that the latter shows the estimated covariance
ψ01 of the random-effect intercepts and slopes rather than their correlation ρ01. Standard
errors of variance and covariance components are of limited usefulness and are not shown.
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Bayesian estimates based on the following weakly informative priors (deferring,
for the moment, the prior for the random-effects correlation parameter ρ01):

βj ∼ N(0, 0.52) for j = 0, 1, 2

β3 ∼ N(0, 1)

loge ψj ∼ N(0, 0.42) for j = 0, 1

loge σε ∼ N(0, 0.42)

As usual, I specified normal priors centered on 0. The prior standard de-
viations take account of the scale of the response, which is log-base-2 hours
per week of exercise: An increase of 1 on the log-2 scale, for example, doubles
exercise, while a decrease of 1 halves exercise.

• Appealing to the ±3 × SD rule as defining the effective prior limits on a
parameter, and setting the prior standard deviation SD(β0) = 0.5 con-
strains the general intercept (i.e., average exercise at age 8) to lie between
2−3×0.5 ≈ 1

3 rd of an hour and 23×0.5 ≈ 3 hours (less, in each case, the
start of 5 minutes used to avoid taking the log of 0). Checking the prior
limits more generally,

Prior SDs −3 −2 −1 1 2 3
Hours of exercise 0.353 0.5 0.707 1.41 2 2.83

• Setting SD(β1) = 0.5 constrains the intercept for the patient group to
differ from that of the control by a multiplicative factor of from 2−3×0.5 ≈
1
3 to 23×0.5 ≈ 3.

• Similarly, setting SD(β2) = 0.5 constrains the general age slope to a decline
or increase in exercise by a factor of at most 3 per year. The table for
β0, shown above, is also applicable to β1 and β2, both of which set the
prior standard deviation to 0.5, treating the numbers given in the table
as multiplicative effects.

• Finally, setting SD(β3) = 1 allows the age slope in the patient group to
be smaller or larger than that in the control group by a factor of at most
23 = 8; more generally, checking at ±1, 2, and 3 prior SDs,

Prior SDs −3 −2 −1 1 2 3
Multiplicative factor 1

8
1
4

1
2 2 4 8

The standard deviations of the normal priors for the random-effect log stan-
dard deviations, loge ψ0 and loge ψ1, and for the error log standard deviation,
loge σε, are harder to understand because the response is itself on the log-base-2
scale. I’ve taken these prior standard deviations as 0.4, which implies the follow-
ing multiplicative constraint on the original hours-per week scale of the response:
from 2exp(−3×0.4) ≈ 1.2 to 2exp(3×0.4) ≈ 10, which is quite broad—ranging over
nearly an order of magnitude. More generally,
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Prior SDs −3 −2 −1 1 2 3
Multiplicative factor 1.23 1.37 1.59 2.81 4.68 9.99

The correlation ρ between the random-effect intercept B0 and slope B1 also
merits special treatment because, as a correlation, it’s bounded between −1
and 1, and thus isn’t naturally modeled with a normal prior. R. A. Fisher’s
z-transformation of the correlation (introduced in Fisher, 1915),

z(ρ) ≡ 1
2 loge

1 + ρ

1− ρ
= arctanh(ρ)

maps ρ to (−∞,∞) and serves to normalize its distribution. I then used the prior
z(ρ01) ∼ N(0, 0.6) which effectively constrains ρ01 between tanh(−3 × 0.6) ≈
−.95 and tanh(3× 0.6) ≈ .95.50 Checking more generally at ±1, 2, and 3 prior
standard deviations,

Prior SDs −3 −2 −1 1 2 3
ρ01 −.947 −.834 −.537 .537 .834 947

The prior distributions for the fixed effects, error standard deviation, random-
effect standard deviations, and random-effect correlation are graphed in Fig-
ure 25.22.

The ML estimates and the Bayesian estimates using flat priors are similar
to one-another (see Table 25.5), as is to be expected. The Bayesian estimates
produced by the vaguely informative priors just discussed are also similar to the
other two sets of estimates.

I could take this example in several directions. In Section 23.4, for example,
I considered different structures for the random effects in the model along with
the possibility of serially correlated intra-individual errors. Here I’ll pursue
another issue in the Davis et al. data: the relatively large number of 0 responses
(about 12% overall). To this point, I’ve dealt with the 0s by adding 5 minutes
to each exercise value prior to taking logs to reduce the positive skew in the
distribution of the response. I’ll instead now specify a so-called hurdle model ,
which takes the 0s explicitly into account, and which is similar in spirit to the
zero-inflated Poisson and negative-binomial models for overdispersed count data
discussed in Section 15.2.1.51

50∗This trick works because there are only two sets of random-effect coefficients in the
model, the B0is and the B1is. More generally, the random-effect covariance matrix Ψ can be
larger than 2 × 2 but must be positive-definite. It consequently requires a parametrization
and prior distribution that preserve positive-definiteness. See the references at the end of the
chapter for further discussion, in particular, the LKJ prior for the correlation matrix of the
random effects described by Gelman et al. (2013, pages 578, 584).

You may be unfamiliar with the hyperbolic tangent function, tanh, and its inverse, the
arctanh function, which is used for Fisher’s z-transformation. The hyperbolic tangent of x is
defined as

tanh(x) ≡
e2x − 1

e2x + 1

and arctanh(y) = x when tanh(x) = y.
51I don’t want to imply, however, that a hurdle model requires a Bayesian approach—it’s

possible, with proper software (and such software exists), to fit a mixed-effects hurdle model
by maximum likelihood.
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βj, j = 0,1,2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.35 0.5 0.71 1 1.41 2 2.83p(βj)
2βj

(a)

β3

−3 −2 −1 0 1 2 3

0.125 0.25 0.5 1 2 4 8
p(β3)

2β3

(b)

logeσε,logeψ0,logeψ1

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2

1.23 1.37 1.59 2 2.81 4.68 9.99
p( ⋅ )

2σε,2ψ0,2ψ1

(c)

z(ρ)

−2 −1 0 1 2

−0.95 −0.83 −0.54 0 0.54 0.83 0.95
p(z(ρ))

ρ
(d)

Figure 25.22 Vaguely informative priors for the parameters of the simple mixed-effects model fit

to Davis et al.’s data on exercise and eating orders.
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Table 25.5 Maximum-Likelihood and Bayesian Estimates for a Simple Mixed-Effects Model

Fit to Davis et al.’s Exercise Data.
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The mixed-effects hurdle model consists of two components—a logistic-regression
component for modeling the 0s, and a linear-regression component for modeling
the nonzero measurements:52

Nij |xi1, xi2 ∼ Bernoulli(πij)

Nij , Ni′j′ independent for i 6= i′ or j 6= j′

ηij = ξ0 + ξ1x1i + ξ2x2ij + ξ3x1ix2ij + Z0i + Z1ix2ij

πij =
1

1 + e−ηij

zi ≡ [Z0i, Z1i]
′ ∼ N2

(
[0, 0]′,Ψz

2×2

)
zi, zi′ independent for i 6= i′

log2 Yij |(Yij > 0, xi1, xi2) ∼ N(µij , σ
2
ε)

Yij , Yi′j′ independent for i 6= i′ or j 6= j′

µij = β0 + β1x1i + β2x2ij + β3x1ix2ij +B0i +B1ix2ij

bi ≡ [B0i, B1i]
′ ∼ N2

(
[0, 0]′,Ψb

2×2

)
bi,bi′ independent for i 6= i′

where

• the dichotomous response Nij = 0 if exercise is 0 for individual i on
occasion j and Nij = 1 if exercise is nonzero;

• ηij is the linear predictor for the logit part of the model;

• the ξs are fixed effects in the logit part of the model;

• the Zs are random-effects coefficients in the logit part of the model;

• the elements of Ψz are variance and covariance components for the random
effects in the logit part of the model; and

• Yij , µij , the βs, the Bs, and Ψb (replacing Ψ) are defined as in Equa-
tions 25.16 (on page 59), but only for nonzero exercise, where Yij is now
hours of exercise without the necessity of adding a start to the exercise
values to avoid the log of 0.

I’ll use the same priors as before for the linear part of the model, along with
the following vague priors for the logit part of the model:

52As before, if you’re unfamiliar with matrix notation, just think of zi and bi as lists
of individual-specific regression coefficients and Ψz and Ψb as tables of the variance and
covariance components for the corresponding random effects.
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• ξ0 is the average logit of nonzero exercise at age 8. I know that overall
about 1

8 of exercise measurements are 0s and thus about 7
8 are nonzero,

but the proportion of 0s is likely greater at age 8 than overall.53 To use
the data to help specify the prior is problematic from a Bayesian perspec-
tive,54 however, and so I’ll disregard this information, and simply specify
the normal prior ξ0 ∼ N(0, 1). Then three prior standard deviations cor-
respond to logits between −3 and 3, which translate to probabilities of
nonzero exercise between approximately .05 and .95, a broad prior range.
More generally, we have the following probabilities of nonzero exercise at
±1, 2, and 3 prior SDs:

Prior SDs −3 −2 −1 1 2 3
π .047 .119 .269 .731 .881 .953

• ξ1 is the average difference in the logit of nonzero exercise between eating-
disordered and control subjects at age 8. I don’t expect a large difference at
such an early age, but taking ξ1 ∼ N(0, 0.52) constrains the relative odds
of nonzero exercise for the two groups to lie between exp(−3×0.5) = 0.22
and exp(3×0.5) = 4.5, that is, to differ by a factor of no more than about
5, which is certainly not very restrictive. More generally,

Prior SDs −3 −2 −1 1 2 3
relative odds 0.22 0.37 0.61 1.65 2.7 4.5

• ξ2 is the average age slope of nonzero exercise on the logit scale. Using
the prior ξ2 ∼ N(0, 0.52) therefore permits the odds of nonzero exercise
to either increase or decrease by at most a factor of 5 per year (and
the relative odds at ±1, 2, and 3 prior SDs are as in the table for ξ1
immediately above).

• ξ3 is the average difference in the age slope of nonzero exercise between
eating-disordered and control subjects on the logit scale. Once more us-
ing the prior ξ2 ∼ N(0, 0.52) constrains the odds of nonzero exercise to
increase or decrease in eating-disordered subjects up to 5 times more slowly
or rapidly in comparison to control subjects.55 Again, the relative odds
at ±1, 2, and 3 prior SDs are as in the table for ξ1.

• I’ll use the same prior distributions for the variance-covariance components
of the random effects in the logit part of the model as in the linear part of
the model, thus taking loge ψZj ∼ N(0, 0.42) for j = 0, 1 and z(ρZ0Z1) ∼
N(0, 0.62).

The priors for the fixed-effect coefficients in the logit part of the hurdle model
are shown in Figure 25.23.

53Of course, we don’t have to speculate because we have the data. I invite the reader to
find the percentage of 0s at age 8.

54For more on this point, see Section 25.5.
55The researchers’ expectation was that exercise would increase more rapidly with age in

the eating-disordered group.
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ξ0

−3 −2 −1 0 1 2 3

0.05 0.12 0.27 0.5 0.73 0.88 0.95
p(ξ0)

π

(a)

ξj,  j = 1,2,3

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.22 0.37 0.61 1 1.65 2.72 4.48p(ξj)

exp(ξj)
(b)

Figure 25.23 Vaguely informative priors for the fixed-effect intercept (a) ξ0 and (b) coefficients

ξ1, ξ2, and ξ3 in the logit part of the hurdle model fit to Davis et al.’s data on

exercise and eating orders.

As usual, I estimated the posterior distribution of the parameters by Hamil-
tonian Monte Carlo, using four independent Markov chains of 10,000 iterations
each, the first half of which were discarded as burn-in, leaving m = 20, 000 sam-
pled values of each parameter. The hurdle model, as specified, proved difficult
to estimate, with two of the parameters having unacceptably small estimated
effective sample sizes, m̂eff = 465 for ψZ0

and m̂eff = 236 for ρZ0Z1
.

I encountered a similar problem in Section 23.4, where I couldn’t fit a mixed
model to the Davis et al. data that had random intercepts, random slopes, and
serially correlated errors. After all, there are few measurements per individual
(about 4, on average) to estimate the variance and covariance components, along
with parameters modeling serial dependence in the errors.

In the current context, tightening the priors for the variance-covariance com-
ponents of the logit part of the model might make it possible to estimate the
hurdle model.56 I decided instead to simplify the random-effects structure by
eliminating random intercepts from the logit part of the model, retaining ran-
dom slopes; that reduces the variance-covariance components for this part of the
model to the single standard deviation ψZ1

. The resulting parameter estimates
(posterior means and standard deviations) are shown in Table 25.6.

56Fiddling with a prior in light of an unsatisfactory posterior could also be regarded from a
Bayesian point of view as cheating; see Section 25.5 for further discussion, and Exercise 25.7.
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Table 25.6 Posterior Means and Standard Deviations for the Mixed-Effects Hurdle Model fit

to the Davis et al. Data.

Parameter Posterior Mean Posterior SD
β0 −0.304 0.107
β1 −0.186 0.199
β2 0.209 0.018
β3 0.210 0.035
ξ0 1.782 0.161
ξ1 −0.491 0.274
ξ2 0.296 0.085
ξ3 0.163 0.105
σε 1.022
ψB0 1.352
ψB1 0.151
ρB0B1

−0.478
ψZ1

0.394

A common application of Bayesian estimation is to mixed-effects models of var-
ious kinds. The linear, generalized-linear, and nonlinear mixed models discussed
in Chapters 23 and 24 all provide probability models for data, and these models
can be extended in various ways, as illustrated by the hurdle model fit in the
current section. With suitable priors for the regression coefficients and variance-
covariance components, Bayesian estimates for mixed-effects models can by ob-
tained by MCMC methods. The prior distribution for the variance-covariance
components of a mixed model must be suitably parametrized to produce a positive-
definite covariance matrix for the random effects.

A convenient by-product of estimating the model by MCMC is that we
can calculate quantities derived from the parameters for each sample of the
parameter values, providing estimated posterior distributions for these derived
quantities. Figure 25.24, for example, is an effect plot for the estimated hurdle
model. It is constructed by calculating the linear predictors η and µ for the
logit and linear parts of the hurdle model in each Monte-Carlo sample, setting
age to 8 through 18 at intervals of 2 years, in combination with the two levels
of group (patient and control), producing 6× 2 = 12 values of η and µ.

This computation is repeated for each of the m = 20, 000 retained HMC
samples. The corresponding fitted value of hours of exercise per week in each
sample is then the probability that exercise is nonzero—that is, 1/(1 + eη)—
times estimated hours of exercise per week conditional on nonzero exercise, 2µ.
The 12 means across the 20,000 samples are the points in the effect plot in
Figure 25.24, while their .025 and .975 quantiles provide 95% credible intervals
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Figure 25.24 Average exercise (displayed as points) as a function of age and group, based on the

mixed-effects hurdle model fit to the Davis et al. data. The bars around the points

show 95% central credible intervals.
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for the effects. Compare this graph to Figure 23.10 (page 725), which is based on
a simpler mixed-effects model for log2(exercise + 5 minutes) fit by REML (and
which evaluates the fitted model between ages 8 and 16 rather than between 8
and 18).

A convenient by-product of estimating a regression model by MCMC is that we can
calculate quantities derived from the parameters for each sample of the parameter
values, providing estimated posterior distributions of the derived quantities. One
application of this idea is to the construction of effect plots.

25.5 Concluding Remarks

First, a couple of caveats: Although I have an interest in the foundations of
statistical inference, I’m far from an expert on the subject. You should take
these remarks as an expression of my opinion, although, as you’ll see, I don’t
hold strong opinions on the relative merits of the various approaches to statis-
tical inference, and I think that both frequentist and Bayesian inference can be
reasonably used in applications.57

There is a lot to recommend Bayesian approaches to statistical inference.
Quantifying uncertainty in terms of probabilities makes the interpretation of
results much more straightforward than in classical inference, where we have
to be careful, for example, not to treat a p-value as the probability that the
null hypothesis is wrong, and not to interpret a confidence level as the proba-
bility that an unknown parameter lies in a confidence interval. Indeed, in some
circumstances, failure to make what appear to be pedantic distinctions can pro-
duce grossly distorted applications of classical inference. When you genuinely
hold subjective prior beliefs that are consistent with the axioms of probability
theory, or can construct a prior distribution based on existing research, Bayesian
inference provides clear and correct answers to questions of statistical inference.

The problem that I see with almost all applications of Bayesian inference,
however, is that the priors that are used don’t have compelling subjective justi-
fication or support in existing research. Instead, priors are typically justified by
vague, if generally plausible, arguments, such as those employed in the examples
in this chapter,58 or are selected automatically. In the latter instance, the prior
may use aspects of the data, begging the question of whether it is “prior” at

57This section was strongly influenced by discussions with Georges Monette of York Uni-
versity in Toronto, whose knowledge of the foundations of statistical inference vastly exceeds
mine. Of course, Georges isn’t responsible for my remarks here.

58Indeed, it’s my impression that often less thought is given to the formulation of vaguely
informative priors than in the examples in this chapter.
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all.59 I’ve even encountered an application of Bayesian inference, by a promi-
nent Bayesian (who will remain anonymous), in which the prior distribution of
a parameter was altered because the resulting posterior distribution appeared
unreasonable, turning Bayesian inference on its head.

Prior distributions for regression coefficients and other parameters (such
as the error variance) are typically specified individually and are taken to be
independent, so that the joint prior distribution of the parameters of the model
is the product of the marginal priors. That is the approach that I used for
the examples in this chapter. We know, however, that regression coefficients
are almost always correlated, rendering this procedure generally unreasonable
even when the marginal priors have strong justification, either subjectively or
in existing research. If the joint prior is based on existing research, we probably
also have a basis for addressing dependencies among parameters, but if the
marginal priors are subjective, it’s difficult to see how to specify a joint prior
directly.

That’s not to say that Bayesian estimation should be ruled out when there’s
not a compelling prior distribution, because it may in many instances be justified
on other—including frequentist—grounds, such as regularization: That is, the
constraints imposed by a suitably formulated, if only weakly justified, prior
prevent wild estimates, such as those produced by highly unusual data. In these
instances, however, the argument for Bayesian inference is not as obviously right.

Bayesians often correctly point out that the importance of the prior fades as
the quantity of data grows. But the other side of this coin is that the prior can
be important when data are sparse: Tautologically, when the prior matters, it
matters what prior you choose. As I explained, if you have a strong justification
for a prior, either subjective or based on experience, then all is well. If specifi-
cation of a prior is ambiguous, however, and the posterior distribution changes
substantially with the prior that’s selected, it’s not clear what has been gained
from Bayesian inference. You could show how results vary by choice of prior,
but that hardly provides a satisfactory conclusion. You might as well report a
wide confidence interval based on the data alone.

I believe that the flexibility of current software for Bayesian estimation partly
explains the increasing popularity of the Bayesian approach. That is, software
such as Stan (Carpenter et al., 2017) allows one to tailor a statistical model
to the data. This advantage of Bayesian software is somewhat ironic, in that
until relatively recently the inability to obtain estimates except in the case of

59There is, however, a principled approach, termed empirical Bayes estimation, that uses
the data to construct a prior distribution. Empirical Bayes methods are potentially applicable
to situations in which parameters are hierarchically related, as is the case in the mixed effects
models considered in Section 25.4, where, for example, the distributions of individual-level
regression coefficients depend on variance-covariance components, which are termed hyperpa-
rameters. The justification of empirical Bayes methods typically appeals to reduced mean-
squared error of estimation in comparison to classical estimators, a frequentist criterion (see
on-line Appendix Section D5.2). Empirical Bayes estimators may be thought of as approx-
imations to Bayesian estimators. Efron and Morris (1977) and Casella (1985) provide nice
introductions to empirical Bayes methods. Also see the discussion in footnote 40 (page 45) of
conditioning on the sample distribution of the explanatory variables.
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conjugate priors rendered Bayesian estimation impractical in most applications.
Nor is this kind of flexibility intrinsic to Bayesian estimation—Stan, for example,
can be used to obtain approximate maximum-likelihood estimates.

Most of my comments in this section concern the choice of prior distributions
in Bayesian inference about regression coefficients. None of the points that I
raise are original, and Bayesians have various responses to the reservations about
priors that I express here. That the choice of priors in Bayesian inference is a
matter of controversy, even among Bayesians, however, and that the subject can
quickly get esoteric, suggest that these matters are far from settled.

Exercises
Please find data analysis exercises and data sets for this chapter on the website
for the book.

Exercise 25.1. Return to the application of Bayes’s theorem described at the
end of Section 25.1.1 (on page 3). On the basis of the information supplied,
calculate the probability that you have antibodies to the virus given a positive
test, Pr(A|P ). Compare this probability to the probability of a positive test
given antibodies Pr(P |A). Are you surprised by the difference between these
two probabilities? Can you explain the source of the difference in simple terms?
In developing your explanation, it might help to consider what Pr(A|P ) would
be in a population in which no one had antibodies—that is, for which Pr(A) = 0.

Exercise 25.2. The preliminary example of Bayesian inference in Section 25.1.2
describes a situation in which two biased coins, one with the probability of a
head Pr(H) = .3 and the other with Pr(H) = .8, are loose in a drawer and
you don’t know which is which. Suppose instead that these two biased coins
are mixed in with eight fair coins for which Pr(H) = .5. As in Section 25.1.2,
you choose one coin from the drawer and flip it 10 times, observing 7 heads
in the 10 flips. Let H1 represent the hypothesis that you picked the coin with
Pr(H) = .3, H2 the hypothesis that you picked the coin with Pr(H) = .8, and
H3 the hypothesis that you picked one of the coins with Pr(H) = .5. What is
a reasonable set of prior probabilities for these hypotheses? Find the likelihood
of the data under each hypothesis, and then compute the posterior probabilities
for the three hypotheses. What do you conclude?

Exercise 25.3. Figure 25.3 (page 11) summarizes the example in Section 25.1.5,
where a coin is flipped n = 10 times, producing h = 7 heads, and the resulting
Bernoulli likelihood is combined with a beta prior to produce a beta posterior
distribution. Figure 25.3 shows the posteriors for π, the probability of a head
on an individual flip, produced by the flat Beta(a = 1, b = 1) prior and the
informative Beta(a = 16, b = 16) prior.

(a) What happens to the posterior distribution of π for both of these priors
as the sample size grows, successively taking on the values n = 10, 100,
and 1000, while the observed proportion of heads remains at .7? For
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each of the two priors, graph the resulting posterior distributions, show-
ing the posterior modes along with 95% central posterior intervals for
π. Comment on the results.

(b) Now let n = 10, as in the text, but vary the observed number of heads
h = 0, 1, 2, . . . , 10; use the informative Beta(a = 16, b = 16) prior. How
does the posterior mode of π change with the number of heads?

Exercise 25.4. ∗The Jeffreys prior is invariant with respect to transformation
of a parameter. The Jeffreys prior for estimating a probability (population
proportion) π is pJ(π) = 1/

[
Π
√
π(1− π)

]
, as given in Section 25.1.6. Here

Π ≈ 3.14159 is the mathematical constant, capitalized to differentiate it from
the probability π.

More generally, suppose that the parameter α is transformed to β = f(α),
where f(·) is a smooth, continuous function. Then, for the prior density pα(α)
to be invariant with respect to transformation, it must be the case that

pβ(β) = pα(α)

∣∣∣∣dαdβ
∣∣∣∣

where pβ(β) is the prior density for β and
∣∣∣∣dαdβ

∣∣∣∣ is the Jacobian of the transfor-

mation from α to β.60 It turns out that the Fisher information,61

Iα(α) = −E
[
d2 loge L(α)

dα2

]
(where L(α) is the likelihood function) has the property that

Iβ(β) = Iα(α)

(
dα

dβ

)2

and so the Jeffreys prior is proportional to the square-root of the Fisher infor-
mation: pα(α) ∝

√
Iα(α).

A Bernoulli random variable takes on the value 1 with probability π and the
value 0 with probability 1− π, and so the likelihood for the sum h (for “heads,”
invoking our example of flipping a coin repeatedly and counting the number of
heads) of n independent Bernoulli random variables is L(π) = πh(1 − π)n−h.
Show that the corresponding Jeffreys prior is then proportional to n/

√
π(1− π)

and thus to 1/
√
π(1− π) (because n is a constant).62

60See on-line Appendix Section D.1.3 for an explanation of the the Jacobian of a transfor-
mation of a random variable. The formula in the appendix is for a vector random variable
but simplifies to the result given here when the random variable, α, is a scalar.

61See on-line Appendix Section D.6.2.
62The result in the text includes the normalizing constant 1/Π.



EXERCISES 73

Exercise 25.5. Bayesian estimation of the mean of a normal distribution with
known variance: Although this is an unrealistic problem—if the mean µ of
Y ∼ N(µ, σ2) is unknown, then it would be very unusual to know the variance
σ2—the solution is instructive.

If Y is normally distributed with mean µ and variance σ2, then the density
function for a sample of n independent observations drawn from the distribution
is63

pdata(data = {y1, y2, . . . , yn}) =

n∏
i=1

1

(2πσ)
1
2

exp

[
− (yi − µ)2

2σ2

]
(25.18)

=
1

(2πσ)
n
2

exp

[
−
∑n
i=1(yi − µ)2

2σ2

]
Thinking of Equation 25.18 as a function of µ given σ and the data produces

the likelihood function L(µ|σ, data). It turns out that the conjugate prior for µ
is also a normal distribution, say µ ∼ N(µ0, σ

2
0) and so the prior density is

pµ(µ) =
1

(2πσ0)
1
2

exp

[
− (µ− µ0)2

2σ2
0

]
Because pµ(µ) = N(µ0, σ

2
0) is a conjugate prior, the posterior is also normal,

and takes the form

pµ|data(µ|data) =
1

(2πσ2
1)

1
2

exp

[
− (µ− µ1)2

2σ2
1

]
where the posterior mean µ1 and variance σ2

1 of µ are

µ1 =

y

σ2/n
+
µ0

σ2
0

1

σ2/n
+

1

σ2
0

=

ny

σ2
+
µ0

σ2
0

n

σ2
+

1

σ2
0

σ2
1 =

1
1

σ2/n
+

1

σ2
0

=
1

n

σ2
+

1

σ2
0

Here, y = 1
n

∑
yi is the familiar sample mean of y.64

(a) The posterior mean µ1 is therefore a weighted average of the sample

mean y and the prior mean µ0 with respective weights
1

σ2/n
= n/σ2

63See on-line Appendix Section D.3.1 for the formula of the density function of the normal
distribution.

64Although setting up this result is straightforward—just multiply the formulas for pµ(µ)
and pµ|data(µ|data) and note that multiplying two exponentials is equivalent to the exponen-
tial of the sum of their exponents—putting the result in the form given here requires nontrivial
algebra. See, for example, Box and Tiao (1973, Appendix A1.1).
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and 1/σ2
0 . Do you recognize the quantity σ2/n in the denominator of

the weight for the sample mean? What is it?

(b) The weights associated with the sample mean and the prior mean are

called their precision. Thus,
1

σ2/n
= n/σ2 is the precision of y and

1/σ2
0 is the precision of µ0. What is the relationship between precision

and variance? Why is the term “precision” used? Why does it make
intuitive sense to weight each term by its precision?

(c) The posterior variance of µ is the inverse of the sum of the precision of
the sample mean and the precision of the prior mean. Is that a sensible
result?

Exercise 25.6. More on complete separation in logistic regression: Ander-
son’s (1935) iris data set has been a staple of the statistical literature since
R. A. Fisher (1936) used it to introduce linear discriminant analysis (a method
of classification). Logistic regression can also be used to classify objects into
two or more classes based on characteristics of the objects.

Anderson’s data consist of 150 specimens of irises collected in the Gaspé
Peninsula of Québec, Canada, 50 each of the species setosa, versicolor, and
virginica. Four measurements were made for each flower: sepal length, sepal
width, petal length, and petal width, all in cm.

(a) Draw a scatterplot matrix for the four measured variables, marking the
points by iris species. What do you conclude about the ability of the
four variables to distinguish among the species?

(b) Perform a binary logistic regression of species setosa versus the other
two species as the response on the four measured variables as predictors,
fitting the model by maximum likelihood. Are you able to fit the model?
Try again using Bayesian logistic regression, either via Firth’s bias-
reduced logistic regression or directly specifying a vague prior. What
do you conclude?

(c) Dichtomizing iris species is artificial, and we can instead perform a poly-
tomous logistic regression (see Section 14.2.1) with the three species as
the response. Try to fit the polytomous logit model by maximum likeli-
hood. Are you successful? Try again using Bayesian polytomous logistic
regression with a vague prior. Alternatively, Kosmidis and Firth (2011)
extend Firth’s bias-reduced binary logistic regression to polytomous lo-
gistic regression; use their method to fit the polytomous logit model to
the iris data.

Exercise 25.7. Return to the mixed-effects hurdle model fit to Davis et al.’s
data on eating disorders and exercise, the results of which are summarized in
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Table 25.6 (page 67). I encountered an obstacle in fitting this model that led
me to remove the random-effect intercepts from the model, thereby eliminating
the parameters ψZ0

and ρZ0Z1
. As I indicated (see footnote 56 on page 66),

a conceptually problematic alternative to simplifying the random effects might
be to tighten the priors for some of the parameters. Experiment with this
approach. Are you able to obtain useful estimates? If so, do the estimates of
the fixed effects differ substantially from those reported in Table 25.6?

Summary
• Named after the Reverend Thomas Bayes, an 18th-century English math-

ematician, Bayes’s theorem, which follows from elementary probability
theory, states that for events A and B,

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

where Pr(B) = Pr(B|A) Pr(A)+Pr(B|A) Pr(A) is the unconditional prob-
ability of B (and A is the event not-A).

Bayesian statistical inference is based on the following interpretation of
Bayes’s theorem:

– Let A represent an uncertain proposition (a “hypothesis”), and let B
represent observed data that are relevant to the truth of the propo-
sition.

– Pr(A) is the prior probability of A, our strength of belief in A prior
to collecting data.

– Pr(B|A) is the probability of obtaining the observed data assuming
the truth of A—the likelihood of the data given A.

– Pr(A|B), the posterior probability ofA, represents our revised strength
of belief in A in light of the data B.

Bayesian inference is therefore a rational procedure for updating one’s
beliefs on the basis of evidence.

• Bayes’s theorem can be extended to several hypotheses H1, H2, . . . ,Hk,
with prior probabilities Pr(Hi), i = 1, . . . , k, that sum to 1, and observed
data D with likelihood Pr(D|Hi) under hypothesis Hi; the posterior prob-
ability of hypothesis Hi is

Pr(Hi|D) =
Pr(D|Hi) Pr(Hi)∑k
j=1 Pr(D|Hj) Pr(Hj)

Similarly, Bayes’s theorem is applicable to random variables such as a
parameter α, with prior probability distribution or density p(α), and like-
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lihood L(α) ≡ p(D|α) for the data D. Then

p(α|D) =
L(α)p(α)∑

all α′ L(α′)p(α′)

when the parameter α is discrete, or

p(α|D) =
L(α)p(α)∫

A
L(α′)p(α′) dα′

when α is continuous (and where A represents the set of all values of α)

• Bayesian inference is simplest with a conjugate prior distribution, which
combines with the likelihood to produce a posterior distribution in the
same family as the prior. For example, if h counts the number of heads
in n independent flips of a coin with probability π of obtaining a head
on an individual flip, then the Bernoulli likelihood for the data is L(π) =
πh(1−π)n−h. Combining this likelihood with the prior distribution p(π) =
Beta(a, b) produces a posterior distribution in the same family as the prior,
p(π|D) = Beta(h+ a, n− h+ b).

• There are several kinds of uninformative prior distributions. The flat
prior assigns equal probability density to all values of a parameter; if the
parameter is unbounded, then the flat prior is improper, in that it doesn’t
integrate to 1, and a flat prior for a parameter is not in general flat for
a transformation of the parameter. The Jeffreys prior for a parameter
(introduced by Sir Harold Jeffreys), in contrast, is invariant with respect
to transformation of the parameter. Weakly informative priors are often
employed in practice, and are selected to place broad plausible constraints
on the value of a parameter.

• Bayesian interval estimates, termed credible intervals (analogous to fre-
quentist confidence intervals), are computed from the posterior distribu-
tion of a parameter. The 100a% central posterior interval runs from the
(1−a)/2 to the (1+a)/2 quantile of the posterior distribution. A Bayesian
credible interval has a simple interpretation as a probability statement:
For example, the probability is .95 that the parameter is in the 95% pos-
terior interval.

• Bayesian inference extends to the simultaneous estimation of several pa-
rameters α ≡ [α1, α2, . . . , αk]′. Given the joint prior distribution for the
parameters p(α) along with the joint likelihood L(α) based on data D,
the posterior distribution of α is

p(α|D) =
p(α)L(α)∫

A
p(α∗)L(α∗)dkα∗

where A is the set of all values of the parameter vector α (i.e., the multi-
dimensional parameter space).
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• Markov-chain Monte Carlo (MCMC ) is a set of methods for drawing ran-
dom samples from—and hence approximating—the posterior distribution
p(α|D) without having explicitly to evaluate the integral in the denom-
inator, which is typically intractible analytically. MCMC methods have
therefore rendered Bayesian inference practical for a broad range of sta-
tistical problems.

There are three common (and related) MCMC methods: the Metropolis-
Hastings algorithm, the Gibbs sampler, and Hamiltonian Monte Carlo
(HMC ). HMC is considered the best current method of MCMC for sam-
pling from continuous distributions.

• In theory, Markov chains produced by MCMC sampling converge to the
target distribution as the number of simulated draws goes to infinity, but
in practice several sorts of problems can occur in chains of finite length.
Convergence diagnostics help to determine whether MCMC samples ade-
quately characterize a target distribution. In formulating these diagnos-
tics, it helps to sample and compare two or more independent Markov
chains and to discard the initial samples of each (e.g., the first half) as a
“burn-in period.”

– A trace plot is a line graph of a sampled quantity—typically a param-
eter or a function of parameters—versus the simulation index. If the
MCMC samples have converged to the target distribution, then the
center and spread of the trace plot shouldn’t change on average with
the index, and trace plots for independent Markov chains should be
similar.

– The potential scale-reduction factor R̂ measures the similarity of two
or more Markov chains for a sampled quantity such as a parameter.
If the chains have converged, then R̂ should be close to 1.

– The effective sample size meff ≈ pm/
(

1 + 2
∑t′

t=1 rt

)
measures the

amount of information about a sampled quantity contained in the
MCMC samples, where p is the number of independent chains em-
ployed, m is the number of samples retained from each chain, rt is
the estimated autocorrelation of the sampled values at lag t, and t′
is selected so that rt is negligible for t > t′.

• The normal linear regression model provides a probability model for the
data from which the likelihood can be calculated:

Yi|xi1, xi2, . . . , xik ∼ N(α+ β1xi1 + β2xi2 + · · ·+ βkxik, σ
2
ε)

Yi, Yi′ are independent for i 6= i′

To obtain Bayesian estimates of the parameters of the regression model,
α, β1, . . . , βk, and σε, we require prior distributions for the parameters.
One approach is to use vaguely informative normal priors, remembering
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that almost all—99.7%—of the density of a normal distribution is within
3 standard deviations of its mean, and that 95% and 68% of the density
lie respectively within 2 and 1 standard deviations of the mean. In this
approach, the priors for the various parameters are specified separately
and are treated as independent.

The standard deviation of the errors, σε, can’t be negative, and so we can
use a normal prior for its log. Because the intercept α is often far from
the observed data, in specifying a prior distribution for α, it often helps
first to center the xs at their means or at other meaningful values.

Once the regression model and the priors are specified, the joint posterior
distribution of the parameters is approximated by Markov-chain Monte
Carlo.

• Bayesian estimation of generalized linear models is very similar to Bayesian
estimation of linear models: The GLM provides a probability model for
the data (see Section 15.1):

ηi = α+ β1xi1 + · · ·βkxik
µi = g−1(ηi)

Yi|xi1, . . . , xik ∼ p(µi, φ)

where the conditional distribution p(µi, φ) of the response Yi is a member
of an exponential family, with expectation µi and dispersion parameter φ
(which recall is set to 1 in the binomial and Poisson families).

Once prior distributions for the parameters of the model are specified,
their posterior distribution can be approximated by MCMC.

• Firth (1993) showed that substantial bias reduction in estimating the lo-
gistic regression model under difficult circumstances can be achieved by
employing the Jeffreys prior. An especially problematic data pattern for
logistic regression to which Firth’s estimator is applicable is complete sepa-
ration, where a linear function of the regressors in the model partitions the
data into disjoint regions of 0s and 1s. In this case, maximum-likelihood
estimation of the logistic regression coefficients produces one or more in-
finite estimates, while Firth’s method yields finite estimates.

• A common application of Bayesian estimation is to mixed-effects models of
various kinds. The linear, generalized-linear, and nonlinear mixed models
discussed in Chapters 23 and 24 all provide probability models for data,
and these models can be extended in various ways, as illustrated by the
hurdle model fit in Section 25.4. With suitable priors for the regression
coefficients and variance-covariance components, Bayesian estimates for
mixed-effects models can by obtained by MCMC methods. The prior dis-
tribution for the variance-covariance components of a mixed model must
be suitably parametrized to produce a positive-definite covariance matrix
for the random effects.
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• A convenient by-product of estimating a regression model by MCMC is
that we can calculate quantities derived from the parameters for each sam-
ple of the parameter values, providing estimated posterior distributions of
the derived quantities. One application of this idea is to the construction
of effect plots.

Recommended Reading
Books and articles on Bayesian statistics are typically written by committed
Bayesians, and so I suggest that you maintain an open mind with respect to
the case that Bayesians often press against classical approaches to statistical
inference. There is a very large literature on modern Bayesian methods; the few
sources given here are therefore highly selected.

• The treatise on Bayesian data analysis by Gelman et al. (2013) is a wide-
ranging and through treatment of the subject by some of the leading
figures in contemporary Bayesian statistics. The book covers in greater
detail all of the topics included in this chapter (basics of Bayesian in-
ference, MCMC methods, linear models, generalized linear models, and
mixed-effects models) and more, and almost all of the book should be
accessible to readers of the starred sections of the current text.

• McElreath (2020) presents a much gentler introduction to Bayesian meth-
ods, but, like Gelman et al. (2013), takes up the topics in this chapter,
usually more thoroughly than I do, along with others, such as causal in-
ference. Depending on your taste, you may find the author’s style either
engaging or irritating, but his exposition is almost always very clear and
carefully thought-out. The computing in the text tends towards the id-
iosyncratic, with a compelling justification: Rather than using standard
black-box Bayesian software such as Stan (see below), McElreath guides
the reader through the nuts and bolts of Bayesian computations, with the
object of rendering the process transparent.

• Gelman and Hill (2007), and its partial successor Gelman et al. (2021),
are intended for a second course in statistics. Both books treat linear and
generalized linear models from a Bayesian perspective, while Gelman and
Hill (2007) (as the title of their book implies) additionally cover hierar-
chical (i.e., mixed-effects) regression models. A projected second updated
volume supplementing Gelman et al. (2021) will also focus on hierarchical
models. The older text by Gelman and Hill (2007) primarily uses R and
BUGS for computing, while Gelman et al. (2021) use R and Stan.

• The documentation for Stan (Carpenter et al., 2017), available at https:
//mc-stan.org/users/documentation/ and including a user’s guide, lan-
guage reference manual, and more, provides valuable information not only
on using the Stan software but also on current practices in Bayesian data
analysis more generally.
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• Thomas and Tu (2021), which appeared after this chapter was written, is
a generally accessible introduction to Hamilton Monte Carlo. In addition
to explaining how the Metropolis-Hastings and HMC algorithms work,
the authors develop applications to linear regression, logistic regression,
and Poisson regression with random intercepts. The article is associated
with the hmclearn R package for exploring HMC. The implementation of
various regression models in this package, and in the article, is weakened
by cavalier treatment of prior distributions, specifying independent normal
priors with a common prior standard deviation for regression coefficients.

• For what Bayesian statistics was like in the era prior to the use of MCMC,
see Box and Tiao (1973), who present a lucid treatment of the basics of
Bayesian inference along with a range of applications, including to regres-
sion models. Although they are Bayesians, the authors don’t hesitate to
use the term “random effect models.”

• Chi (2023) has posted a clever set of animations that demonstrate MCMC
methods, including Metropolis-Hastings, the Gibbs sampler, and Hamilto-
nian Monte Carlo, with a variety of two-dimensional target distributions.
These animations are much more effective in conveying the workings of
MCMC than static graphs like Figure 25.5 (page 21), which I used to
illustrate the Metropolis algorithm.
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acceptance rate, 23, 24
acceptance ratio, 18, 34
autocorrelation, of MCMC samples, 20,

24, 26, 27, 30, 32, 35, 37, 41,
42, 77

Bayes’s theorem, 2–5, 7, 75
Bayes, Thomas, 2
Bernoulli distribution, 8, 23
Bernoulli likelihood, 7, 8
Bernoulli, Jacob, 8
beta distribution, 9, 23
bias reduction, in logistic regression,

53–55
bivariate-normal distribution, 19–20, 28–

29, 31, 32, 41, 42
BUGS, 79
burn-in period, in MCMC, 19, 37–39,

41, 44, 66

complete separation, in logistic regres-
sion, 53, 74

concentration ellipse, 20, 21
confidence interval, 14, 69
Cowles and Davis logistic regression,

48–53
credible interval, 14, 24, see also pos-

terior interval

Davis et al. mixed-effects model, 56–69
Duncan’s ocupational prestige regres-

sion, 43–48

effect plot, 50, 67
effective sample size, 41, 42, 44, 66
empirical Bayes estimation, 70

Fisher z-transformation, of correlation,
61

Fisher, R.A., 61, 72, 74

generalized linear model, Bayesian es-
timation of, 48–53

Gibbs sampler, 16, 26–29
Gibbs, Josiah, 16

Hamilton, William Rowan, 16
Hamiltonian, 33
Hamiltonian Monte Carlo, 16, 29–35
HMC, see Hamiltonian Monte Carlo
hurdle model, 61–69
hyperbolic tangent function, 61
hyperparameters, 70

Jeffreys prior, see prior, Jeffreys
Jeffreys, Harold, 12

kernel-density estimator, 20, 25, 29, 35

law of total probability, 2
leapfrog method, of HMC, 33–34
likelihood function, 2, 3, 5, 6, 8, 9, 15,

23, 43
limiting distribution, of Markov chain,

18
linear model, Bayesian estimation of,

43–48
logistic regression, 48–55
logit, 12, see also logistic regression

Markov chain, 17, 18
Markov process, 17
Markov, Andrey Andreevich, 17
Markov-chain Monte Carlo, 7, 15–42
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maximum-likelihood estimation, 4, 8,
9, 12, 49, 53, 56, 58, 71

MCMC, see Markov-chain Monte Carlo
mean-squared error, 46, 70
Metropolis algorithm, original, 19, 20
Metropolis-Hastings algorithm, 15, 17–

24
mixed-effects models, Bayesian estima-

tion of, 56–69

normalizing constant, 17–19, 32, 34, 72

odds, 12, 51, 65

parameter space, 6, 15, 38
parameters, as random variables, 6, 14
posterior density, 9, 12
posterior distribution, 7, 9, 10, 14, 15,

23, 24
marginal, 15
proper, 12
unnormalized, 17

posterior interval, 11, 14, 72, 76
central, 14

potential scale-reduction factor, 41, 44
precision, 74
principle of marginality, 57
prior density, 6
prior distribution, 6, 9, 23

beta, 9–12, 23–25
conjugate, 6–8, 12, 15, 23, 25, 71,

73
diffuse, vaguely informative, weak,

weakly informative, see prior
distribution, vague

flat, 9–13, 23–27, 44, 45, 48, 50,
59, 61

for coefficients of factors, 49–50,
57–58

improper, 12, 44
Jeffreys, 10, 12, 13, 55, 72
joint, for several parameters, 14,

43, 45, 70
LKJ, for correlation matrix, 61
non-informative, uninformtive, see

prior distribution, flat

normal, 46, 48, 50, 60, 64
reference, 12
vague, 12, 44–52, 60–62, 64, 66,

69, 74
prior distributions, independent, 14, 43,

44, 48, 57, 58, 70
probability

conditional, 2
frequentist interpretation of, 3, 4
marginal, 2
posterior, 2, 3, 5–7
prior, 2, 5, 6
subjectivist interpretation of, 3, 4
unconditional, 2

proposal distribution, 17–19, 23, 24, 27
proposal, in MCMC sampling, 17, 18,

20, 21, 24, 32, 34, 35

QQ plot, see quantile-comparison plot
quantile, 14
quantile-comparison plot, 24

rectangular distribution, 18
regularization, 46, 70
relative frequencies, 4
ridge regression, 46

scalar function, of parameters, 15
sensitivity, of a test, 4
shape parameters, of beta distribution,

9
shrinkage, in estimation, 46
specificity, of a test, 4
Stan, 16, 44, 70, 71, 79
support, of a random variable, 17, 20

target distribution, in MCMC, 16–20,
22, 24, 29, 33, 35, 36

convergence to, 35–42
thinning, in MCMC, 19, 20, 24, 29, 37,

44
total probability, law of, 2
trace plot, 37–38, 40, 44
tuning, of HMC, 16, 35, 44

Ulam, Stanislaw, 16
uniform distribution, 18
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warm-up period, in MCMC, 44, see also
burn-in period


