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Preface to the Appendices

These appendices are meant to accompany my text on Applied Regression, Generalized

Linear Models, and Related Methods, Third Edition (Sage, 2016). Appendix A on

Notation, which appears in the printed text, is reproduced here in nearly identical form

for convenience. The other appendices are available only in this document. Appendices

B (on Matrices, Linear Algebra, and Vector Geometry) and C (on Calculus) are starred

not because they are terribly difficult but because they are required only for starred

portions of the main text. Parts of Appendix D (on Probabilty and Estimation) are left

un-starred because they are helpful for some un-starred material in the main text.

Individuals who do not have a copy of my Applied Regression text are welcome to

read these appendices if they find them useful, but please do not ask me questions about

them. Of course, I would be grateful to learn of any errors.

vii
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Appendix A
Notation

Specific notation is introduced at various points in the appendices and chapters. Through-

out the text, I adhere to the following general conventions, with few exceptions. [Ex-

amples are shown in brackets.]

• Known scalar constants (including subscripts) are represented by lowercase italic
letters [   

∗
1].

• Observable scalar random variables are represented by uppercase italic letters [,
, 

0
0] or, if the names contain more than one character, by roman letters, the

first of which is uppercase [RegSS, RSS0]. Where it is necessary to make the

distinction, specific values of random variables are represented as constants [,

, 
0
0].

• Scalar parameters are represented by lowercase Greek letters [, , ∗ , 2]. (See
the Greek alphabet in Table A.1.) Their estimators are generally denoted by

“corresponding” italic characters [, , ∗ , 2], or by Greek letters with diacritics

[b, b].
• Unobservable scalar random variables are also represented by lowercase Greek

letters [].

• Vectors and matrices are represented by boldface characters–lowercase for vectors
[x1, β], uppercase for matrices [X, Σ12]. Roman letters are used for constants

and observable random variables [y, x1, X]. Greek letters are used for parameters

and unobservable random variables [β, Σ12, ε]. It is occasionally convenient to

show the order of a vector or matrix below the matrix [ ε
(×1)

, X
(×+1)

]. The

order of an identity matrix is given by a subscript [I]. A zero matrix or vector

is represented by a boldface 0 [0]; a vector of 1’s is represented by a boldface 1,

possibly subscripted with its number of elements [1]. Vectors are column vectors,

unless they are explicitly transposed [column: x; row: x0].

• Diacritics and symbols such as ∗ (asterisk) and 0 (prime) are used freely as modi-
fiers to denote alternative forms [X∗, 0, e ].

• The symbol ≡ can be read as “is defined by,” or “is equal to by definition” [ ≡
(
P

)].

1



2 APPENDIX A. NOTATION

Table A.1 The Greek Alphabet With Roman “Equivalents”

Greek Letter Roman Equivalent

Lowercase Uppercase Phonetic Other

 A alpha a

 B beta b

 Γ gamma g, n c

  ∆ delta d

 E epsilon e

 Z zeta z

 H eta e

 Θ theta th

 I iota i

 K kappa k

 Λ lambda l

 M mu m

 N nu n

 Ξ xi x

o O omicron o

 Π pi p

 P rho r

 Σ sigma s

 T tau t

 Υ upsilon y, u

 Φ phi ph

 X chi ch x

 Ψ psi ps

 Ω omega o w



3

• The symbol ≈ means “is approximately equal to” [13 ≈ 0333].
• The symbol ∝ means “is proportional to” [(|) ∝ ()()].

• The symbol ¿ means “much less than” [¿ 0001].

• The symbol ∼ means “is distributed as” [ ∼ (0 2)].

• The symbol ∈ denotes membership in a set [1 ∈ {1 2 3}].
• The operator ( ) denotes the expectation of a scalar, vector, or matrix random
variable [(), (ε), (X)].

• The operator  ( ) denotes the variance of a scalar random variable or the variance-
covariance matrix of a vector random variable [ (),  (b)].

• Estimated variances or variance-covariance matrices are indicated by a circumflex
(“hat”) placed over the variance operator [b (), b (b)].

• The operator ( ) gives the covariance of two scalar random variables or the

covariance matrix of two vector random variables [(  ), (x ε)].

• The operators E( ) and V( ) denote asymptotic expectation and variance, respec-
tively. Their usage is similar to that of ( ) and  ( ) [E(), V(bβ), bV()].

• Probability limits are specified by plim [plim  = ].

• Standard mathematical functions are shown in lowercase [cos , trace(A)]. The

base of the log function is always specified explicitly, unless it is irrelevant [log ,

log10]. The exponential function exp() represents 
.

• The summation signP is used to denote continued addition [
P

=1 ≡ 1+2+

· · ·+]. Often, the range of the index is suppressed if it is clear from the context

[
P

], and the index may be suppressed as well [
P

]. The symbol
Q
similarly

indicates continued multiplication [
Q

=1 () ≡ (1)×(2)×· · ·×()]. The

symbol # indicates a count [#
=1(

∗
 ≥  )].

• To avoid awkward and repetitive phrasing in the statement of definitions and
results, the words “if” and “when” are understood to mean “if and only if,” unless

explicitly indicated to the contrary. Terms are generally set in italics when they

are introduced. [“Two vectors are orthogonal if their inner product is 0.”]
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Appendix B
Matrices, Linear Algebra, and Vector

Geometry*

Matrices provide a natural notation for linear models and, indeed, much of statistics; the

algebra of linear models is linear algebra; and vector geometry is a powerful conceptual

tool for understanding linear algebra and for visualizing many aspects of linear models.

The purpose of this appendix is to present basic concepts and results concerning ma-

trices, linear algebra, and vector geometry. The focus is on topics that are employed

in the main body of the book, and the style of presentation is informal rather than

mathematically rigorous: At points, results are stated without proof; at other points,

proofs are outlined; often, results are justified intuitively. Readers interested in pursu-

ing linear algebra at greater depth might profitably make reference to one of the many

available texts on the subject, each of which develops in greater detail most of the topics

presented here (see, e.g., the recommended readings at the end of the appendix).

The first section of the appendix develops elementary matrix algebra. Sections B.2

and B.3 introduce vector geometry and vector spaces. Section B.4 discusses the related

topics of matrix rank and the solution of linear simultaneous equations. Sections B.5 and

B.6 deal with eigenvalues, eigenvectors, quadratic forms, and positive-definite matrices.

B.1 Matrices

B.1.1 Introducing the Actors: Basic Definitions

A matrix is a rectangular table of numbers or of numerical variables; for example

X
(4×3)

=

⎡⎢⎢⎣
1 −2 3

4 −5 −6
7 8 9

0 0 10

⎤⎥⎥⎦ (B.1)

or, more generally,

A
(×)

=

⎡⎢⎢⎢⎣
11 12 · · · 1
21 22 · · · 2
...

...
...

1 2 · · · 

⎤⎥⎥⎥⎦ (B.2)

5



6 APPENDIX B. MATRICES, LINEAR ALGEBRA, VECTOR GEOMETRY

A matrix such as this with  rows and  columns is said to be of order  by , written

(× ). For clarity, I at times indicate the order of a matrix below the matrix, as in

Equations B.1 and B.2. Each entry or element of a matrix may be subscripted by its

row and column indices:  is the entry in the th row and th column of the matrix A.

Individual numbers, such as the entries of a matrix, are termed scalars. Sometimes, for

compactness, I specify a matrix by enclosing its typical element in braces; for example,

A
(×)

= {} is equivalent to Equation B.2
A matrix consisting of one column is called a column vector ; for example,

a
(×1)

=

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦
Likewise, a matrix consisting of one row is called a row vector,

b0 = [1 2 · · ·  ]
In specifying a row vector, I often place commas between its elements for clarity.

The transpose of a matrixA, denotedA0, is formed fromA so that the th row ofA0

consists of the elements of the th column of A; thus (using the matrices in Equations

B.1 and B.2),

X0
(3×4)

=

⎡⎣ 1 4 7 0

−2 −5 8 0

3 −6 9 10

⎤⎦

A0
(×)

=

⎡⎢⎢⎢⎣
11 21 · · · 1
12 22 · · · 2
...

...
...

1 2 · · · 

⎤⎥⎥⎥⎦
Note that (A0)0 = A. I adopt the convention that a vector is a column vector (such as
a above) unless it is explicitly transposed (such as b0).
A square matrix of order , as the name implies, has  rows and  columns. The

entries  (that is, 11 22     ) of a square matrix A comprise the main diagonal

of the matrix. The sum of the diagonal elements is the trace of the matrix:

trace() ≡
X
=1



For example, the square matrix

B
(3×3)

=

⎡⎣ −5 1 3

2 2 6

7 3 −4

⎤⎦
has diagonal elements, −5 2 and −4, and trace(B) =P3

=1  = −5 + 2− 4 = −7.
A square matrix A is symmetric if A = A0, that is, when  =  for all  and .

Consequently, the matrix B (above) is not symmetric, while the matrix

C =

⎡⎣ −5 1 3

1 2 6

3 6 −4

⎤⎦
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is symmetric. Many matrices that appear in statististical applications are symmetric–

for example, correlation matrices, covariance matrices, and matrices of sums of squares

and cross-products.

An upper-triangular matrix is a square matrix with zeroes below its main diagonal:

U
(×)

=

⎡⎢⎢⎢⎣
11 12 · · · 1
0 22 · · · 2
...

...
. . .

...

0 0 · · · 

⎤⎥⎥⎥⎦
Similarly, a lower-triangular matrix is a square matrix of the form

L
(×)

=

⎡⎢⎢⎢⎣
11 0 · · · 0

21 22 · · · 0
...

...
. . .

...

1 2 · · · 

⎤⎥⎥⎥⎦
A square matrix is diagonal if all entries off its main diagonal are zero; thus,

D
(×)

=

⎡⎢⎢⎢⎣
1 0 · · · 0

0 2 · · · 0
...

...
. . .

...

0 0 · · · 

⎤⎥⎥⎥⎦
For compactness, I may write D = diag(1 2     ). A scalar matrix is a diagonal

matrix all of whose diagonal entries are equal: S = diag(      ). An especially

important family of scalar matrices are the identity matrices I, which have ones on the

main diagonal:

I
(×)

=

⎡⎢⎢⎢⎣
1 0 · · · 0

0 1 · · · 0
...
...

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎦
I write I for I

(×)
.

Two other special matrices are the family of zero matrices 0, all of whose entries are

zero, and the unit vectors 1, all of whose entries are one. I write 1 for the unit vector

with  entries; for example 14 = (1 1 1 1)
0. Although the identity matrices, the zero

matrices, and the unit vectors are families of matrices, it is often convenient to refer to

these matrices in the singular, for example, to the identity matrix.

A partitioned matrix is a matrix whose elements are organized into submatrices; for

example,

A
(4×3)

=

⎡⎢⎢⎣
11 12 13
21 22 23
31 32 33
41 42 43

⎤⎥⎥⎦ =
⎡⎣ A11

(3×2)
A12
(3×1)

A21
(1×2)

A22
(1×1)

⎤⎦
where the submatrix

A11 ≡
⎡⎣ 11 21

21 22
31 32

⎤⎦
and A12, A21, and A22 are similarly defined. When there is no possibility of confusion,

I omit the lines separating the submatrices. If a matrix is partitioned vertically but
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not horizontally, then I separate its submatrices by commas; for example, C
(×+)

="
C1

(×)
 C2
(×)

#
.

B.1.2 Simple Matrix Arithmetic

Two matrices are equal if they are of the same order and all corresponding entries are

equal (a definition used implicitly in Section B.1.1).

Two matrices may be added only if they are of the same order; then their sum is

formed by adding corresponding elements. Thus, if A and B are of order (×), then

C = A+B is also of order (×), with  = + . Likewise, if D = A−B, then D
is of order (× ), with  =  −  . The negative of a matrix A, that is, E = −A,
is of the same order as A, with elements  = − . For example, for matrices

A
(2×3)

=

∙
1 2 3

4 5 6

¸
and

B
(2×3)

=

∙ −5 1 2

3 0 −4
¸

we have

C
(2×3)

= A+B =

∙ −4 3 5

7 5 2

¸
D

(2×3)
= A−B =

∙
6 1 1

1 5 10

¸
E

(2×3)
= −B =

∙
5 −1 −2
−3 0 4

¸
Because they are element-wise operations, matrix addition, subtraction, and nega-

tion follow essentially the same rules as the corresponding scalar operations; in partic-

ular,

A+B = B+A (matrix addition is commutative)

A+ (B+C) = (A+B) +C (matrix addition is associative)

A−B = A+ (−B) = −(B−A)
A−A = 0

A+ 0 = A

−(−A) = A
(A+B)0 = A0 +B0

The product of a scalar  and an (× ) matrix A is an (× ) matrix B = A

in which  =  . Continuing the preceding examples:

F
(2×3)

= 3×B = B× 3 =
∙ −15 3 6

9 0 −12
¸

The product of a scalar and a matrix obeys the following rules:
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A = A (commutative)

A(+ ) = A+A (distributes over scalar addition)

(A+B) = A+ B (distributes over matrix addition)

0A = 0

1A = A

(−1)A = −A

where, note,   0 1 and −1 are scalars, and A, B, and 0 are matrices of the same
order.

The inner product (or dot product) of two vectors (each with  entries), say a0
(1×)

and b
(×1)

, denoted a0 ·b, is a scalar formed by multiplying corresponding entries of the
vectors and summing the resulting products:1

a0 · b =
X
=1



For example,

[2 0 1 3] ·

⎡⎢⎢⎣
−1
6

0

9

⎤⎥⎥⎦ = 2(−1) + 0(6) + 1(0) + 3(9) = 25
Two matrices A and B are conformable for multiplication in the order given (i.e.,

AB) if the number of columns of the left-hand factor (A) is equal to the number of

rows of the right-hand factor (B). Thus A and B are conformable for multiplication if

A is of order (× ) and B is of order (× ), where  and  are unconstrained. For

example, ∙
1 2 3

4 5 6

¸
(2×3)

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦
(3×3)

are conformable for multiplication, but⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦
(3×3)

∙
1 2 3

4 5 6

¸
(2×3)

are not.

Let C = AB be the matrix product; and let a0 represent the th row of A and b
represent the th column of B. Then C is a matrix of order (× ) in which

 = a
0
 · b=

X
=1



1Although this example is for the inner product of a row vector with a column vector, both vectors

may be row vectors or both column vectors.



10 APPENDIX B. MATRICES, LINEAR ALGEBRA, VECTOR GEOMETRY

Some examples:⎡⎣ =⇒
1 2 3

4 5 6

⎤⎦
(2×3)

⎡⎣ 1 0 0

⇓ 0 1 0

0 0 1

⎤⎦
(3×3)

=

∙
1(1) + 2(0) + 3(0) 1(0) + 2(1) + 3(0) 1(0) + 2(0) + 3(1)

4(1) + 5(0) + 6(0) 4(0) + 5(1) + 6(0) 4(0) + 5(0) + 6(1)

¸
(2×3)

=

∙
1 2 3

4 5 6

¸

[0 1 2 3]
(1×4)

⎡⎢⎢⎣
1

1
2
3

⎤⎥⎥⎦
(4×1)

= [0 + 11 + 22 + 33]
(1×1)

∙
1 2

3 4

¸ ∙
0 3

2 1

¸
=

∙
4 5

8 13

¸
(B.3)∙

0 3

2 1

¸ ∙
1 2

3 4

¸
=

∙
9 12

5 8

¸
∙
2 0

0 3

¸ ∙
1
2

0

0 1
3

¸
=

∙
1 0

0 1

¸
(B.4)∙

1
2

0

0 1
3

¸ ∙
2 0

0 3

¸
=

∙
1 0

0 1

¸
Matrix multiplication is associative,A(BC) = (AB)C, and distributive with respect

to addition:

(A+B)C = AC+BC

A(B+C) = AB+AC

but it is not in general commutative: If A is (×) and B is (×) , then the product

AB is defined but BA is defined only if  = . Even so, AB and BA are of different

orders (and hence are not candidates for equality) unless  = . And even if A and

B are square, AB and BA, though of the same order, are not necessarily equal (as

illustrated in Equation B.3). If it is the case that AB = BA (as in Equation B.4), then

the matrices A and B are said to commute with one another. A scalar factor, however,

may be moved anywhere within a matrix product: AB = AB = AB.

The identity and zero matrices play roles with respect to matrix multiplication anal-

ogous to those of the numbers 0 and 1 in scalar algebra:

A
(×)

I = I A
(×)

= A

A
(×)

0
(×)

= 0
(×)

0
(×)

A
(×)

= 0
(×)
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A further property of matrix multiplication, which has no analog in scalar algebra, is

that (AB)0 = B0A0–the transpose of a product is the product of the transposes taken
in the opposite order, a rule that extends to several (conformable) matrices:

(AB · · ·F)0 = F0· · ·B0A0

The powers of a square matrix are the products of the matrix with itself. That is,

A2 = AA, A3 = AAA = AA2 = A2A, and so on. If B2 = A, then we call B a

square-root of A, which we may write as A12. Unlike in scalar algebra, however, the

square root of a matrix is not generally unique.2 If A2 = A, then A is said to be

idempotent.

For purposes of matrix addition, subtraction, and multiplication, the submatrices of

partitioned matrices may be treated as if they were elements, as long as the factors are

partitioned conformably. For example, if

A =

⎡⎣ 11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

⎤⎦ = ∙ A11 A12

A21 A22

¸

and

B =

⎡⎣ 11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

⎤⎦ = ∙ B11 B12
B21 B22

¸
then

A+B =

∙
A11 +B11 A12 +B12
A21 +B21 A22 +B22

¸
Similarly, if

A
(+×+)

=

⎡⎣ A11
(×)

A12
(×)

A21
(×)

A22
(×)

⎤⎦
and

B
(+×+)

=

⎡⎣ B11
(×)

B12
(×)

B21
(×)

B22
(×)

⎤⎦
then

AB
(+×+)

=

∙
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

¸

The Sense Behind Matrix Multiplication

The definition of matrix multiplication makes it simple to formulate systems of scalar

equations as a single matrix equation, often providing a useful level of abstraction. For

example, consider the following system of two linear equations in two unknowns, 1 and

2:

21 + 52 = 4

1 + 32 = 5

2Of course, even the scalar square-root is unique only up to a change in sign.
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Writing these equations as a matrix equation,∙
2 5

1 3

¸ ∙
1
2

¸
=

∙
4

5

¸
A

(2×2)
x

(2×1)
= b
(2×1)

The formulation and solution of systems of linear simultaneous equations is taken up in

Section B.4.

B.1.3 Matrix Inverses

In scalar algebra, division is essential to the solution of simple equations. For example,

6 = 12

 =
12

6
= 2

or, equivalently,

1

6
× 6 = 1

6
× 12

 = 2

where 1
6
= 6−1 is the scalar inverse of 6.

In matrix algebra, there is no direct analog of division, but most square matrices

have a matrix inverse. The inverse of a square matrix3 A is a square matrix of the same

order, written A−1, with the property that AA−1 = A−1A = I. If a square matrix has

an inverse, then the matrix is termed nonsingular ; a square matrix without an inverse

is termed singular.4 If the inverse of a matrix exists, then it is unique; moreover, if for a

square matrix A, AB = I, then necessarily BA = I, and thus B = A−1. For example,
the inverse of the nonsingular matrix ∙

2 5

1 3

¸
is the matrix

∙
3 −5
−1 2

¸
as we can readily verify: ∙

2 5

1 3

¸ ∙
3 −5
−1 2

¸
=

∙
1 0

0 1

¸
X∙

3 −5
−1 2

¸ ∙
2 5

1 3

¸
=

∙
1 0

0 1

¸
X

3 It is possible to define various sorts of generalized inverses for rectangular matrices and for square

matrices that do not have conventional inverses. Although generalized inverses have statistical appli-

cations, I do not use them in the text. See, for example, Rao and Mitra (1971).
4When mathematicians first encountered nonzero matrices without inverses, they found this result

remarkable or “singular.”
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In scalar algebra, only the number 0 has no inverse. It is simple to show by example

that there exist singular nonzero matrices: Let us hypothesize that B is the inverse of

the matrix

A =

∙
1 0

0 0

¸
But

AB =

∙
1 0

0 0

¸ ∙
11 12
21 22

¸
=

∙
11 12
0 0

¸
6= I2

which contradicts the hypothesis, and A consequently has no inverse.

There are many methods for finding the inverse of a nonsingular square matrix. I

will briefly and informally describe a procedure called Gaussian elimination.5 Although

there are methods that tend to produce more accurate numerical results when imple-

mented on a digital computer, elimination has the virtue of relative simplicity, and has

applications beyond matrix inversion (as we will see later in this appendix). To illustrate

the method of elimination, I will employ the matrix⎡⎣ 2 −2 0

1 −1 1

4 4 −4

⎤⎦ (B.5)

Let us begin by adjoining to this matrix an identity matrix; that is, form the partitioned

or augmented matrix ⎡⎣ 2 −2 0 1 0 0

1 −1 1 0 1 0

4 4 −4 0 0 1

⎤⎦
Then attempt to reduce the original matrix to an identity matrix by applying operations

of three sorts:

 : Multiply each entry in a row of the matrix by a nonzero scalar constant.

 : Add a scalar multiple of one row to another, replacing the other row.

 : Exchange two rows of the matrix.

 ,  , and  are called elementary row operations.

Starting with the first row, and dealing with each row in turn, insure that there is

a nonzero entry in the diagonal position, employing a row interchange for a lower row

if necessary. Then divide the row through by its diagonal element (called the pivot) to

obtain an entry of one in the diagonal position. Finally, add multiples of the current

row to the other rows so as to “sweep out” the nonzero elements in the pivot column.

For the illustration:

Divide row 1 by 2, ⎡⎣ 1 −1 0 1
2

0 0

1 −1 1 0 1 0

4 4 −4 0 0 1

⎤⎦
Subtract the “new” row 1 from row 2,⎡⎢⎣ 1 −1 0 1

2
0 0

0 0 1 −1
2

1 0

4 4 −4 0 0 1

⎤⎥⎦
5After the great German mathematician, Carl Friedrich Gauss (1777—1855).



14 APPENDIX B. MATRICES, LINEAR ALGEBRA, VECTOR GEOMETRY

Subtract 4 × row 1 from row 3,⎡⎢⎣ 1 −1 0 1
2

0 0

0 0 1 −1
2

1 0

0 8 −4 −2 0 1

⎤⎥⎦
Move to row 2; there is a 0 entry in row 2, column 2, so interchange rows 2 and 3,⎡⎢⎣ 1 −1 0 1

2
0 0

0 8 −4 −2 0 1

0 0 1 −1
2

1 0

⎤⎥⎦
Divide row 2 by 8, ⎡⎢⎣ 1 −1 0 1

2
0 0

0 1 −1
2
−1
4

0 1
8

0 0 1 −1
2

1 0

⎤⎥⎦
Add row 2 to row 1, ⎡⎢⎣ 1 0 −1

2
1
4

0 1
8

0 1 −1
2
− 1
4

0 1
8

0 0 1 − 1
2

1 0

⎤⎥⎦
Move to row 3; there is already a 1 in the privot position; add 1

2
× row 3 to row 1,⎡⎢⎣ 1 0 0 0 1

2
1
8

0 1 −1
2
−1
4

0 1
8

0 0 1 −1
2

1 0

⎤⎥⎦
Add 1

2
× row 3 to row 2, ⎡⎢⎣ 1 0 0 0 1

2
1
8

0 1 0 −1
2

1
2

1
8

0 0 1 −1
2

1 0

⎤⎥⎦
Once the original matrix is reduced to the identity matrix, the final columns of the

augmented matrix contain the inverse, as we may verify for the example:⎡⎣ 2 −2 0

1 −1 1

4 4 −4

⎤⎦
⎡⎢⎣ 0 1

2
1
8

−1
2

1
2

1
8

−1
2

1 0

⎤⎥⎦ =
⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦ X

It is simple to explain why the elimination method works: Each elementary row op-

eration may be represented as multiplication on the left by an appropriately formulated

square matrix. Thus, for example, to interchange the second and third rows, we may

multiply on the left by

E ≡
⎡⎣ 1 0 0

0 0 1

0 1 0

⎤⎦
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The elimination procedure applies a sequence of (say ) elementary row operations to

the augmented matrix [ A
(×)

 I], which we may write as

E · · ·E2E1 [A I] = [IB]
using E to represent the th operation in the sequence. Defining E ≡ E · · ·E2E1, we
have E [A I] = [IB]; that is, EA = I (implying that E = A−1), and EI = B.

Consequently, B = E = A−1. If A is singular, then it cannot be reduced to I by

elementary row operations: At some point in the process, we will find that no nonzero

pivot is available.

The matrix inverse obeys the following rules:

I−1 = I

(A−1)−1 = A

(A0)−1 = (A−1)0

(AB)−1 = B−1A−1

(A)−1 = −1A−1

(where A and B are are order- nonsingular matrices, and  is a nonzero scalar).

If D = diag(1 2     ), and if all  6= 0, then D is nonsingular and D−1 =
diag(11 12     1). Finally, the inverse of a nonsingular symmetric matrix is

itself symmetric.

B.1.4 Determinants

Each square matrix A is associated with a scalar called its determinant, written detA.

For a (2×2) matrix A, the determinant is detA = 1122−1221. For a (3×3) matrix
A, the determinant is

detA = 112233 − 112332 + 122331

− 122133 + 132132 − 132231

Although there is a general definition of the determinant of a square matrix of order

, I find it simpler here to define the determinant implicitly by specifying the following

properties (or axioms):

D1: Multiplying a row of a square matrix by a scalar constant multiplies the determi-

nant of the matrix by the same constant.

D2: Adding a multiple of one row to another leaves the determinant unaltered.

D3: Interchanging two rows changes the sign of the determinant.

D4: det I = 1.

Axioms D1, D2, and D3 specify the effects on the determinant of the three kinds of

elementary row operations. Because the Gaussian elimination method described in

Section B.1.3 reduces a square matrix to the identity matrix, these properties, along

with axiom D4, are sufficient for establishing the value of the determinant. Indeed, the

determinant is simply the product of the pivot elements, with the sign of the product

reversed if, in the course of elimination, an odd number of row interchanges is employed.

For the illustrative matrix in Equation B.5 (on page 13), then, the determinant is

−(2)(8)(1) = −16. If a matrix is singular, then one or more of the pivots are zero, and
the determinant is zero. Conversely, a nonsingular matrix has a nonzero determinant.
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B.1.5 The Kronecker Product

Suppose that A is an ×  matrix and that B is a ×  matrix. Then the Kronecker

product of A and B, denoted A⊗B, is defined as

A⊗B
(×)

≡

⎡⎢⎢⎢⎣
11B 12B · · · 1B

21B 22B · · · 2B
...

...
. . .

...

1B 2B · · · B

⎤⎥⎥⎥⎦
Named after the 19th Century German mathematician Leopold Kronecker, the Kro-

necker product is sometimes useful in statistics for compactly representing patterned

matrices. For example,

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦⊗ ∙ 21 12
12 22

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
21 12 0 0 0 0

12 22 0 0 0 0

0 0 21 12 0 0

0 0 12 22 0 0

0 0 0 0 21 12
0 0 0 0 12 22

⎤⎥⎥⎥⎥⎥⎥⎦
Many of the properties of the Kronecker product are similar to those of ordinary

matrix multiplication; in particular,

A⊗ (B+C) = A⊗B+A⊗C
(B+C)⊗A = B⊗A+C⊗A
(A⊗B)⊗D = A⊗ (B⊗D)

(A⊗B) = (A)⊗B = A⊗ (B)
where B and C are matrices of the same order, and  is a scalar. As well, like matrix

multiplication, the Kronecker product is not commutative: In general, A⊗B 6= B⊗A.
Additionally, for matrices A

(×)
 B
(×)

 C
(×)

 and D
(×)

,

(A⊗B)(C⊗D) = AC⊗BD
Consequently, if A

(×)
and B

(×)
are nonsingular matrices, then

(A⊗B) = A−1 ⊗B−1

because

(A⊗B) ¡A−1 ⊗B−1¢ = (AA−1)⊗ (BB−1) = I ⊗ I = I(×)
Finally, for any matices A and B,

(A⊗B)0 = A0 ⊗B0

B.2 Basic Vector Geometry

Considered algebraically, vectors are one-column (or one-row) matrices. Vectors also

have the following geometric interpretation: The vector x = (1, 2     )
0 is repre-

sented as a directed line segment extending from the origin of an -dimensional Carte-

sian coordinate space to the point defined by the entries (called the coordinates) of the
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Figure B.1 Examples of geometric vectors in () two-dimensional and () three-dimensional

space. Each vector is a directed line segment from the origin (0) to the point

whose coordinates are given by the entries of the vector.

Figure B.2 Vectors are added by placing the ıtailj of one on the tip of the other and

completing the parallelogram. The sum is the diagonal of the parallelogram

starting at the origin.
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Figure B.3 Vector differences x1 − x2 and x2 − x1.

vector. Some examples of geometric vectors in two- and three-dimensional space are

shown in Figure B.1.

The basic arithmetic operations defined for vectors have simple geometric interpre-

tations. To add two vectors x1 and x2 is, in effect, to place the “tail” of one at the tip of

the other. When a vector is shifted from the origin in this manner, it retains its length

and orientation (the angles that it makes with respect to the coordinate axes); length

and orientation serve to define a vector uniquely. The operation of vector addition,

illustrated in two dimensions in Figure B.2, is equivalent to completing a parallelo-

gram in which x1 and x2 are two adjacent sides; the vector sum is the diagonal of the

parallelogram, starting at the origin.

As shown in Figure B.3, the difference x1−x2 is a vector whose length and orientation
are obtained by proceeding from the tip of x2 to the tip of x1. Likewise, x2−x1 proceeds
from x1 to x2.

The length of a vector x, denoted ||x||, is the square root of its sum of squared

coordinates:

kxk =
vuut X

=1

2

This result follows from the Pythagorean theorem in two dimensions, as shown in Figure

B.4(). The result can be extended one dimension at a time to higher-dimensional

coordinate spaces, as shown for a three-dimensional space in Figure B.4(). The distance

between two vectors x1 and x2, defined as the distance separating their tips, is given

by ||x1 − x2|| = ||x2 − x1|| (see Figure B.3).
The product x of a scalar  and a vector x is a vector of length || × ||x||, as is
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Figure B.4 The length of a vector is the square root of its sum of squared coordinates,

||x|| =
pP

=1 
2
 . This result is illustrated in () two and () three dimensions.
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Figure B.5 Product x of a scalar and a vector, illustrated in two dimensions. The vector x

is collinear with x; it is in the same direction as x if   0, and in the opposite

direction from x if   0.

readily verified:

||x|| =
qX

()2

=

q
2
X

2

= || × ||x||

If the scalar  is positive, then the orientation of x is the same as that of x; if  is

negative, then x is collinear with (i.e., along the same line as) x but in the opposite

direction. The negative −x = (−1)x of x is, therefore, a vector of the same length
as x but of opposite orientation. These results are illustrated for two dimensions in

Figure B.5.

B.3 Vector Spaces and Subspaces

The vector space of dimension  is the infinite set of all vectors x = (1, 2     )
0; the

coordinates  may be any real numbers. The vector space of dimension 1 is, therefore,

the real line; the vector space of dimension 2 is the plane; and so on.

The subspace of the -dimensional vector space that is generated by a set of  vectors

{x1x2    x} is the subset of vectors y in the space that can be expressed as linear
combinations of the generating set:6

y = 1x1 + 2x2 + · · ·+ x

6Notice that each of x1, x2    x is a vector, with  coordinates; that is, {x1, x2    x} is a set
of  vectors, not a vector with  coordinates.
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The set of vectors {x1x2    x} is said to span the subspace that it generates.
A set of vectors {x1x2    x} is linearly independent if no vector in the set can

be expressed as a linear combination of other vectors:

x = 1x1 + · · ·+ −1x−1 + +1x+1 + · · ·+ x (B.6)

(where some of the constants  can be 0). Equivalently, the set of vectors is linearly

independent if there are no constants 1, 2     , not all 0, for which

1x1 + 2x2 + · · ·+ x = 0
(×1)

(B.7)

Equation B.6 or B.7 is called a linear dependency or collinearity. If these equations

hold, then the vectors comprise a linearly dependent set. Note that the zero vector is

linearly dependent on every other vector, inasmuch as 0 = 0x.

The dimension of the subspace spanned by a set of vectors is the number of vectors

in the largest linearly independent subset. The dimension of the subspace spanned by

{x1, x2    x} cannot, therefore, exceed the smaller of  and . These relations are

illustrated for a vector space of dimension  = 3 in Figure B.6. Figure B.6() shows

the one-dimensional subspace (i.e., the line) generated by a single nonzero vector x;

Figure B.6() shows the one-dimensional subspace generated by two collinear vectors

x1 and x2; Figure B.6() shows the two-dimensional subspace (the plane) generated by

two linearly independent vectors x1 and x2; and Figure B.6() shows the plane generated

by three linearly dependent vectors x1, x2, and x3, no two of which are collinear. (In

this last case, any one of the three vectors lies in the plane generated by the other two.)

A linearly independent set of vectors {x1, x2    x}–such as {x} in Figure B.6()
or {x1x2} in Figure B.6()–is said to provide a basis for the subspace that it spans.
Any vector y in this subspace can be written uniquely as a linear combination of the

basis vectors:

y = 1x1 + 2x2 + · · ·+ x

The constants 1, 2      are called the coordinates of y with respect to the basis {x1,
x2    x}.
The coordinates of a vector with respect to a basis for a two-dimensional subspace

can be found geometrically by the parallelogram rule of vector addition, as illustrated in

Figure B.7. Finding coordinates algebraically entails the solution of a system of linear

simultaneous equations in which the  ’s are the unknowns:

y
(×1)

= 1x1 + 2x2 + · · ·+ x

= [x1x2    x]

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦
= X

(×)
c

(×1)

When the vectors in {x1x2    x} are linearly independent, the matrix X is of full

column rank , and the equations have a unique solution.7
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x y x= 
subspace

a

0 0

00

x1

x3
x1

x1

x2

x2

x2

y x x= + 
    subspace

a a1 1 2 2

y x x x = + + 
    subspace

a a a1 1 2 2 3 3

y x x = + 
    subspace

a a1 1 2 2

(a)
(c)

(b) (d)

Figure B.6 Subspaces generated by sets of vectors in three-dimensional space. () One

nonzero vector generates a one-dimensional subspace (a line). () Two collinear

vectors also generate a one-dimensional subspace. () Two linearly independent

vectors generate a two-dimensional subspace (a plane). () Three linearly

dependent vectors, two of which are linearly independent, generate a

two-dimensional subspace. The planes in () and () extend infinitely; they are

drawn between x1 and x2 only for clarity.

Figure B.7 The coordinates of y with respect to the basis {x1x2} of a two-dimensional
subspace can be found from the parallelogram rule of vector addition.
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1

w

cos w

Figure B.8 A unit circle, showing the angle  and its cosine.

B.3.1 Review of Cosines of Angles

Figure B.8 shows a unit circle–that is, a circle of radius 1 centered at the origin.

The angle  produces a right triangle inscribed in the circle; notice that the angle is

measured in a counter-clockwise direction from the horizontal axis. The cosine of the

angle , denoted cos, is the signed length of the side of the triangle adjacent to the

angle (i.e., “adjacent/hypotenuse,” where the hypotenuse is 1 because it is the radius of

the unit circle). The cosine function for angles between −360and 360 degrees is shown in
Figure B.9; negative angles represent clockwise rotations. Because the cosine function

is symmetric around  = 0 , it does not matter in which direction we measure an angle,

and I will simply treat angles as positive.

B.3.2 Orthogonality and Orthogonal Projections

Recall that the inner product of two vectors is the sum of products of their coordinates:

x · y =
X
=1



Two vectors x and y are orthogonal (i.e., perpendicular) if their inner product is 0. The

essential geometry of vector orthogonality is shown in Figure B.10. Although x and y

lie in an -dimensional space (and therefore cannot, in general, be visualized directly),

they span a subspace of dimension two which, by convention, I make the plane of the

paper.8 When x and y are orthogonal [as in Figure B.10()], the two right triangles with

vertices (0, x, x+y) and (0, x, x−y) are congruent; consequently, ||x+y|| = ||x−y||.
Because the squared length of a vector is the inner product of the vector with itself

7The concept of rank and the solution of systems of linear simultaneous equations are taken up in

Section B.4.
8 I frequently use this device in applying vector geometry to statistical problems, where the subspace

of interest can often be confined to two or three dimensions, even though the dimension of the full

vector space is typically equal to the sample size .
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Figure B.9 The cosine function for angles between  = −360 and  = 360 degrees.

(x · x =P2 ), we have

(x+ y) · (x+ y) = (x− y) · (x− y)
x · x+ 2x · y+ y · y = x · x− 2x · y+ y · y

4x · y = 0
x · y = 0

When, in contrast, x and y are not orthogonal [as in Figure B.10()], then ||x+ y|| 6=
||x− y||, and x · y 6= 0.
The definition of orthogonality can be extended to matrices in the following manner:

The matrix X
(×)

is orthogonal if each pair of its columns is orthogonal–that is, if X0X

is diagonal.9 The matrix X is orthonormal if X0X = I.

The orthogonal projection of one vector y onto another vector x is a scalar multipleby = x of x such that (y−by) is orthogonal to x. The geometry of orthogonal projection
is illustrated in Figure B.11. By the Pythagorean theorem (see Figure B.12), by is the
point along the line spanned by x that is closest to y. To find , we note that

x · (y − by) = x · (y − x) = 0

Thus, x · y − x · x = 0 and  = (x · y)(x · x).
The orthogonal projection of y onto x can be used to determine the angle  sepa-

rating two vectors, by finding its cosine. I will distinguish between two cases:10 In Fig-

ure B.13(), the angle separating the vectors is between 0◦ and 90◦; in Figure B.13(),
the angle is between 90◦ and 180◦. In the first instance,

cos =
||by||
||y|| =

||x||
||y|| =

x · y
||x||2 ×

||x||
||y|| =

x · y
||x|| × ||y||

9The  th entry of X0X is x0x = x ·x , where x and x are, respectively, the th and th columns
of X. The th diagonal entry of X0X is likewise x0x = x · x.
10By convention, we examine the smaller of the two angles separating a pair of vectors, and, therefore,

never encounter angles that exceed 180◦. Call the smaller angle ; then the larger angle is 360 − .

This convention is of no consequence because cos(360−) = cos (see Figure B.9).
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Figure B.10 When two vectors x and y are orthogonal, as in (), their inner product x · y is 0.
When the vectors are not orthogonal, as in (), their inner product is nonzero.

Figure B.11 The orthogonal projection by = x of y onto x.

Figure B.12 The orthogonal projection by = x is the point along the line spanned by x that is

closest to y.
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Figure B.13 The angle  separating two vectors, x and y: () 0◦    90◦;
() 90◦    180◦.

and, likewise, in the second instance,

cos = − ||by||||y|| =
||x||
||y|| =

x · y
||x|| × ||y||

In both instances, the sign of  for the orthogonal projection of y onto x correctly

reflects the sign of cos.

The orthogonal projection of a vector y onto the subspace spanned by a set of vectors

{x1, x2    x} is the vector

by = 1x1 + 2x2 + · · ·+ x

formed as a linear combination of the x ’s such that (y − by) is orthogonal to each and
every vector x in the set. The geometry of orthogonal projection for  = 2 is illustrated

in Figure B.14. The vector by is the point closest to y in the subspace spanned by the
x ’s.

Placing the constants  into a vector b, and gathering the vectors x into an (×)

matrix X ≡ [x1, x2    x], we have by = Xb. By the definition of an orthogonal

projection,

x · (y− by) = x · (y−Xb) = 0 for  = 1      (B.8)

Equivalently, X0(y − Xb) = 0, or X0y = X0Xb. We can solve this matrix equation
uniquely for b as long as X0X is nonsingular, in which case b = (X0X)−1X0y. The
matrix X0X is nonsingular if {x1x2    x} is a linearly independent set of vectors,
providing a basis for the subspace that it generates; otherwise, b is not unique.
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Figure B.14 The orthogonal projection by of y onto the subspace (plane) spanned by x1 and x2.
B.4 Matrix Rank and the Solution of Linear Simul-

taneous Equations

B.4.1 Rank

The row space of an ( × ) matrix A is the subspace of the -dimensional vector

space spanned by the  rows of A (treated as a set of vectors). The rank of A is the

dimension of its row space, that is, the maximum number of linearly independent rows

in A. It follows immediately that rank(A) ≤ min().

A matrix is said to be in reduced row-echelon form (RREF ) if it satisfies the following

criteria:

R1: All of its nonzero rows (if any) precede all of its zero rows (if any).

R2: The first nonzero entry (proceeding from left to right) in each nonzero row, called

the leading entry in the row, is 1.

R3: The leading entry in each nonzero row after the first is to the right of the leading

entry in the previous row.

R4: All other entries are 0 in a column containing a leading entry.

Reduced row-echelon form is displayed schematically in Equation B.9, where the aster-

isks represent elements of arbitrary value:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1 * · · · * 0 * · · · * 0 * · · · *

0 · · · 0 0 0 · · · 0 1 * · · · * 0 * · · · *
...

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 * · · · *

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nonzero

rows

zero

rows

(B.9)
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The rank of a matrix in RREF is equal to the number of nonzero rows in the matrix:

The pattern of leading entries, each located in a column all of whose other elements are

zero, insures that no nonzero row can be formed as a linear combination of other rows.

A matrix can be placed in RREF by a sequence of elementary row operations, adapt-

ing the elimination procedure first described in Section B.1.3. For example, starting with

the matrix ⎡⎣ −2 0 −1 2

4 0 1 0

6 0 1 2

⎤⎦
Divide row 1 by −2, ⎡⎣ 1 0 1

2
−1

4 0 1 0

6 0 1 2

⎤⎦
Subtract 4× row 1 from row 2,⎡⎣ 1 0 1

2
−1

0 0 −1 4

6 0 1 2

⎤⎦
Subtract 6× row 1 from row 3,⎡⎣ 1 0 1

2
−1

0 0 −1 4

0 0 −2 8

⎤⎦
Multiply row 2 by −1, ⎡⎣ 1 0 1

2
−1

0 0 1 −4
0 0 −2 8

⎤⎦
Subtract 1

2
× row 2 from row 1,⎡⎣ 1 0 0 1

0 0 1 −4
0 0 −2 8

⎤⎦
Add 2× row 2 to row 3, ⎡⎣ 1 0 0 1

0 0 1 −4
0 0 0 0

⎤⎦
The rank of a matrix A is equal to the rank of its reduced row-echelon form A,

because a zero row in A can only arise if one row of A is expressible as a linear

combination of other rows (or if A contains a zero row). That is, none of the elementary

row operations alters the rank of a matrix. The rank of the matrix transformed to RREF

in the example is thus 2.

The RREF of a nonsingular square matrix is the identity matrix, and the rank of

a nonsingular square matrix is therefore equal to its order. Conversely, the rank of a

singular matrix is less than its order.

I have defined the rank of a matrix A as the dimension of its row space. It can be

shown that the rank of A is also equal to the dimension of its column space–that is,

to the maximum number of linearly independent columns in A.
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B.4.2 Linear Simultaneous Equations

A system of  linear simultaneous equations in  unknowns can be written in matrix

form as

A
(×)

x
(×1)

= b
(×1)

(B.10)

where the elements of the coefficient matrix A and the right-hand-side vector b are

pre-specified constants, and x is the vector of unknowns. Suppose that there is an equal

number of equations and unknowns–that is,  = . Then if the coefficient matrix A

is nonsingular, Equation B.10 has the unique solution x = A−1b.
Alternatively, A may be singular. Then A can be transformed to RREF by a se-

quence of (say, ) elementary row operations, representable as successive multiplication

on the left by elementary-row-operation matrices:

A = E · · ·E2E1A = EA

Applying these operations to both sides of Equation B.10 produces

EAx = Eb (B.11)

Ax = b

where b ≡ Eb. Equations B.10 and B.11 are equivalent in the sense that any solution
vector x = x∗ that satisfies one system also satisfies the other.

Let  represent the rank ofA. Because    (recall thatA is singular), A contains

 nonzero rows and −  zero rows. If any zero row of A is associated with a nonzero

entry (say, ) in b, then the system of equations is inconsistent or over-determined,

for it contains the self-contradictory “equation”

01 + 02 + · · ·+ 0 =  6= 0

If, on the other hand, every zero row of A corresponds to a zero entry in b, then the

equation system is consistent, and there is an infinity of solutions satisfying the system:

− of the unknowns may be given arbitrary values, which then determine the values of
the remaining  unknowns. Under this circumstance, we say that the equation system

is under-determined.

Suppose, now, that there are fewer equations than unknowns–that is,   . Then

 is necessarily less than , and the equations are either over-determined (if a zero row of

A corresponds to a nonzero entry of b) or under-determined (if they are consistent).

For example, consider the following system of three equations in four unknowns:

⎡⎣ −2 0 −1 2

4 0 1 0

6 0 1 2

⎤⎦
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦ =
⎡⎣ 1

2

5

⎤⎦
Adjoin the right-hand-side vector to the coefficient matrix,

⎡⎣ −2 0 −1 2 1

4 0 1 0 2

6 0 1 2 5

⎤⎦
and reduce the coefficient matrix to row-echelon form:
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Divide row 1 by −2, ⎡⎣ 1 0 1
2
−1 −1

2

4 0 1 0 2

6 0 1 2 5

⎤⎦
Subtract 4 × row 1 from row 2, and subtract 6 × row 1 from row 3,⎡⎣ 1 0 1

2
−1 − 1

2

0 0 −1 4 4

0 0 −2 8 8

⎤⎦
Multiply row 2 by −1, ⎡⎣ 1 0 1

2
−1 − 1

2

0 0 1 −4 −4
0 0 −2 8 8

⎤⎦
Subtract 1

2
× row 2 from row 1, and add 2 × row 2 to row 3,⎡⎣ 1. 0 0 1 3

2

0 0 1. −4 −4
0 0 0 0 0

⎤⎦
(with the leading entries marked by arrows).

Writing the result as a scalar system of equations, we get

1 + 4 =
3

2

3 − 44 = −4
01 + 02 + 03 + 04 = 0

The third equation is uninformative, but it does indicate that the original system of

equations is consistent. The first two equations imply that the unknowns 2 and 4 can

be given arbitrary values (say ∗2 and 
∗
4), and the values of the 1 and 3 (corresponding

to the leading entries) follow:

1 =
3

2
− ∗4

3 = −4 + 4∗4
and thus any vector

x =

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ =
⎡⎢⎢⎣

3
2
− ∗4
∗2

−4 + 4∗4
∗4

⎤⎥⎥⎦
is a solution of the system of equations.

Now consider the system of equations

⎡⎣ −2 0 −1 2

4 0 1 0

6 0 1 2

⎤⎦
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦ =
⎡⎣ 1

2

1

⎤⎦
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(a)

x1

x2

x1*

x2*

(b)

x1

x2

(c)

x1

x2

(d)

x1

x2

Figure B.15 Three linear equations in two unknowns: () unique solution; () and ()

over-determined; () under-determined (three coincident lines).

Attaching b to A and transforming the coefficient matrix to RREF yields

⎡⎣ 1 0 0 1 1
2

0 0 1 −4 −2
0 0 0 0 2

⎤⎦
The last equation,

01 + 02 + 03 + 04 = 2

is contradictory, implying that the original system of equations has no solution.

Suppose, finally, that there are more equations than unknowns:   . If A is

of full-column rank (i.e., if  = ), then A consists of the order- identity matrix

followed by  −  zero rows. If the equations are consistent, they therefore have a

unique solution; otherwise, of course, they are over-determined. If   , the equations

are either over-determined (if inconsistent) or under-determined (if consistent).

To illustrate these results geometrically, consider a system of three linear equations
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Table B.1 Solutions of  Linear Simultaneous Equations in  Unknowns

Number of

Equations
    =    

Rank of

Coefficient

Matrix

       =      = 

General Equation System

Consistent
under-

determined

under-

determined

unique

solution

under-

determined

unique

solution

Inconsistent
over-

determined

over-

determined
–

over-

determined

over-

determined

Homogeneous Equation System

Consistent
nontrivial

solutions

nontrivial

solutions

trivial

solution

nontrivial

solution

trivial

solution

in two unknowns:11

111 + 122 = 1

211 + 222 = 2

311 + 322 = 3

Each equation describes a line in a two-dimensional coordinate space in which the

unknowns define the axes, as illustrated schematically in Figure B.15. If the three lines

intersect at a point, as in Figure B.15(), then there is a unique solution to the equation

system: Only the pair of values (∗1 
∗
2) simultaneously satisfies all three equations. If

the three lines fail to intersect at a common point, as in Figures B.15() and (), then

no pair of values of the unknowns simultaneously satisfies the three equations, which

therefore are over-determined. Lastly, if the three lines are coincident, as in Figure

B.15(), then any pair of values on the common line satisfies all three equations, and

the equations are under-determined.

When the right-hand-side vector b in a system of linear simultaneous equations is

the zero vector, the system of equations is said to be homogeneous:

A
(×)

x
(×1)

= 0
(×1)

The trivial solution x = 0 always satisfies a homogeneous system which, consequently,

cannot be inconsistent. From the previous work in this section, we can see that nontrivial

solutions exist if rank(A)  –that is, when the system is under-determined.

The results concerning the solution of linear simultaneous equations developed in

this section are summarized in Table B.1.

B.5 Eigenvalues and Eigenvectors

If A is an order- square matrix, then the homogeneous system of linear equations

(A− I)x = 0 (B.12)

11The geometric representation of linear equations by lines (or, more generally, by linear surfaces)

should not be confused with the geometric vector representation discussed in Section B.2.
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will have nontrivial solutions only for certain values of the scalar . The results in the

preceding section suggest that nontrivial solutions exist when the matrix (A − I) is

singular, that is, when

det(A− I) = 0 (B.13)

Equation B.13 is called the characteristic equation of the matrix A, and the values of

 for which this equation holds are called the eigenvalues, characteristic roots, or latent

roots of A. A vector x1 satisfying Equation B.12 for a particular eigenvalue 1 is called

an eigenvector, characteristic vector, or latent vector of A associated with 1.

Because of its simplicity and straightforward extension, I will examine the (2 × 2)
case in some detail. For this case, the characteristic equation is

det

∙
11 −  12
21 22 − 

¸
= 0

(11 − )(22 − )− 1221 = 0

2 − (11 + 22) + 1122 − 1221 = 0

Using the quadratic formula to solve the characteristic equation produces the two roots12

1 =
1

2

h
11 + 22 +

p
(11 + 22)2 − 4(1122 − 1221)

i
(B.14)

2 =
1

2

h
11 + 22 −

p
(11 + 22)2 − 4(1122 − 1221)

i
These roots are real if the quantity under the radical is non-negative. Notice, inciden-

tally, that 1 + 2 = 11 + 22 (the sum of the eigenvalues of A is the trace of A), and

that 12 = 1122 − 1221 (the product of the eigenvalues is the determinant of A).

Furthermore, if A is singular, then 2 is 0.

If A is symmetric (as is the case for most statistical applications of eigenvalues and

eigenvectors), then 12 = 21, and Equation B.14 becomes

1 =
1

2

∙
11 + 22 +

q
(11 − 22)2 + 4

2
12

¸
(B.15)

2 =
1

2

∙
11 + 22 −

q
(11 − 22)2 + 4

2
12

¸
The eigenvalues of a (2× 2) symmetric matrix are necessarily real because the quantity
under the radical in Equation B.15 is the sum of two squares, which cannot be negative.

I will use the following (2× 2) matrix as an illustration:∙
1 05

05 1

¸
Here

1 =
1

2

h
1 + 1 +

p
(1− 1)2 + 4(05)2

i
= 15

2 =
1

2

h
1 + 1−

p
(1− 1)2 + 4(05)2

i
= 05

12Review of the quadratic formula: The values of  that satisfy the quadratic equation

2 + +  = 0

where   and  are specific constants, are

 =
−±√2 − 4

2
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To find the eigenvectors associated with 1 = 15, solve the homogeneous system of

equations ∙
1− 15 05

05 1− 15
¸ ∙

11
21

¸
=

∙
0

0

¸
∙ −05 05

05 −05
¸ ∙

11
21

¸
=

∙
0

0

¸
yielding

x1 =

∙
11
21

¸
=

∙
∗21
∗21

¸
= ∗21

∙
1

1

¸
(that is, any vector with two equal entries). Similarly, for 2 = 05, solve∙

1− 05 05

05 1− 05
¸ ∙

12
22

¸
=

∙
0

0

¸
∙
05 05

05 05

¸ ∙
12
22

¸
=

∙
0

0

¸
which produces

x2 =

∙
12
22

¸
=

∙ −∗22
∗22

¸
= ∗22

∙ −1
1

¸
(that is, any vector whose two entries are the negative of each other). The set of

eigenvalues associated with each eigenvector therefore spans a one-dimensional subspace:

When one of the entries of the eigenvector is specified, the other entry follows. Notice

further that the eigenvectors x1 and x2 are orthogonal:

x1 · x2 = −∗21∗22 + ∗21
∗
22 = 0

Many of the properties of eigenvalues and eigenvectors of (2×2) matrices generalize
to (× ) matrices. In particular:

• The characteristic equation, det(A − I) = 0, of an ( × ) matrix is an th-

order polynomial in ; there are, consequently,  eigenvalues, not all necessarily

distinct.13

• The sum of the eigenvalues of A is the trace of A.

• The product of the eigenvalues of A is the determinant of A.

• The number of nonzero eigenvalues of A is the rank of A.

• A singular matrix, therefore, has a least one zero eigenvalue.
• If A is a symmetric matrix, then the eigenvalues of A are all real numbers.

• If the eigenvalues of A are distinct (i.e., all different), then the set of eigenvectors

associated with a particular eigenvalue spans a one-dimensional subspace. If,

alternatively,  eigenvalues are equal, then their common set of eigenvectors spans

a subspace of dimension .

• Eigenvectors associated with different eigenvalues are linear independent, and, in
a symmetric matrix, are orthogonal.

13Finding eigenvalues by solving the characteristic equation directly is not generally an attractive

approach, and other, more practical, methods exist for finding eigenvalues and their associated eigen-

vectors.
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B.6 Quadratic Forms and Positive-Definite Matrices

The expression

x0
(1×)

A
(×)

x
(×1)

(B.16)

is called a quadratic form in x. In this section (as in typical statistical applications),

A will always be a symmetric matrix. A is said to be positive-definite if the quadratic

form in Equation B.16 is positive for all nonzero x. A is positive-semidefinite if the

quadratic form is non-negative (i.e., positive or zero) for all nonzero vectors x. The

eigenvalues of a positive-definite matrix are all positive (and, consequently, the matrix

is nonsingular); those of a positive-semidefinite matrix are all positive or zero.

Let

C
(×)

= B0
(×)

A
(×)

B
(×)

where A is positive-definite and B is of full-column rank  ≤ . I will show that C is

also positive-definite. Note, first, that C is symmetric:

C0 = (B0AB)0 = B0A0B = B0AB = C

If y is any ( × 1) nonzero vector, then x
(×1)

= By is also nonzero: Because B is of

rank , we can select  linearly independent rows from B, forming the nonsingular

matrix B∗. Then x∗
(×1)

= B∗y, which contains a subset of the entries in x, is nonzero

because y = B∗−1x∗ 6= 0. Consequently
y0Cy = y0B0ABy = x0Ax

is necessarily positive, and C is positive-definite. By similar reasoning, if rank(B)   ,

then C is positive-semidefinite. The matrix B0
(×)

B
(×)

= B0IB is therefore positive-

definite if B is of full-column rank (because I is clearly positive-definite), and positive-

semidefinite otherwise.14

B.7 Recommended Reading

There is a plethora of books on linear algebra and matrices. Most presentations develop

the fundamental properties of vector spaces, but often, unfortunately, without explicit

visual representation.

• Several matrix texts, including Healy (1986), Graybill (1983), Searle (1982), and
Green and Carroll (1976), focus specifically on statistical applications. The last

of these sources has a strongly geometric orientation.

• Davis (1965), who presents a particularly lucid and simple treatment of matrix
algebra, includes some material on vector geometry (limited, however, to two

dimensions).

• Namboodiri (1984) provides a compact introduction to matrix algebra (but not
to vector geometry).

• Texts on statistical computing, such as Kennedy and Gentle (1980) and Mona-
han (2001), typically describe the implementation of matrix and linear-algebra

computations on digital computers.

14Cf., the geometric discussion following Equation B.8 on page 26.
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Appendix C
An Introduction To Calculus*

What is now called calculus deals with two basic types of problems: finding the slopes of

tangent lines to curves (differential calculus) and evaluating areas under curves (integral

calculus). In the 17th century, the English physicist and mathematician Sir Isaac New-

ton (1643—1727) and the German philosopher and mathematician Gottfried Wilhelm

Leibniz (1646—1716) independently demonstrated the relationship between these two

kinds of problems, consolidating and extending previous work in mathematics dating to

the classical period. Newton and Leibniz are generally acknowledged as the cofounders

of calculus.1 In the 19th century, the great French mathematician Augustin Louis

Cauchy (1789—1857), among others, employed the concept of the limit of a function to

provide a rigorous logical foundation for calculus.

After a review of some elementary mathematics–equations of lines and planes, poly-

nomial functions, logarithms, and exponentials–I will briefly take up the following

seminal topics in calculus, emphasizing basic concepts: Section C.2, limits of functions;

Section C.3, the derivative of a function; Section D.4, the application of derivatives to

optimization problems; Section D.5, partial derivatives of functions of several variables,

constrained optimization, and differential calculus in matrix form; Section D.6, Taylor

series; and Section D.7, the essential ideas of integral calculus.

Although a thorough and rigorous treatment is well beyond the scope of this brief

appendix, it is remarkable how far one can get in statistics with a intuitive grounding

in the basic ideas of calculus.

C.1 Review

C.1.1 Lines and Planes

A straight line has the equation

 = + 

where  and  are constants. The constant  is the -intercept of the line, that is, the

value of  associated with  = 0; and  is the slope of the line, that is the change

in  when  is increased by 1: See Figure C.1, which shows straight lines in the two-

dimensional coordinate space with axes  and ; in case case, the line extends infinitely

to the left and right beyond the line-segment shown in the graph. When the slope is

1Newton’s claim that Leibniz had appropriated his work touched off one of the most famous priority

disputes in the history of science.

37
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(a) b > 0

x

y

0

a 1
b

(b) b < 0

x

y

0

a 1
b

(c) b = 0

x

y

0

a

Figure C.1 The graph of a straight line,  = + , for ()   0, ()   0, and ()  = 0.

0
x1

x2

y

1

1

a

b1

b2

y a  b1x1 b2x2

Figure C.2 The equation of a plane,  = + 11 + 22. Here, both slopes, 1 and 2, are

positive.

positive,   0, the line runs from lower left to upper right; when the slope is negative,

  0, the line runs from upper left to lower right; and when  = 0 , the line is horizontal.

Similarly, the linear equation

 = + 11 + 22

represents a flat plane in the three-dimensional space with axes 1, 2, and , as il-

lustrated in the 3D graph in Figure C.2; the axes are at right-angles to each other, so

think of the 2 axis as extending directly into the page.The plane extends infinitely in

all directions beyond the lines on its surface shown in the graph. The intercept of the

plane, , is the value of  when both 1 and 2 are 0; 1 represents the slope of the

plane in the direction of 1 for a fixed value of 2; and 2 represents the slope of the

plane in the direction of 2 for a fixed value of 1.
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(a) y  a0 a1x

x

y
(b) y  a0  a1x a2x

2

x

y
(c) y  a0 a1x a2x

2 a3x
3

x

y

Figure C.3 ıTypicalj first-order (linear), second-order (quadratic), and third-order (cubic)

polynomials.

C.1.2 Polynomials

Polynomials are functions of the form

 = 0 + 1+ 2
2 + · · ·+ 



where 0 1 2      are constants, some of which (with the exception of ) may be

0. The largest exponent, , is called the order of the polynomial. In particular, and as

illustrated in Figure C.3, a first-order polynomial is a straight line,

 = 0 + 1

a second-order polynomial is a quadratic equation,

 = 0 + 1+ 2
2

and a third-order polynomial is a cubic equation,

 = 0 + 1+ 2
2 + 3

3

A polynomial equation of order  can have up to − 1 “bends” in it.

C.1.3 Logarithms and Exponentials

Logarithms (“logs”) are exponents: The expression

log  = 

which is read as, “the log of  to the base  is ,” means that

 = 

where   0 and  6= 1. Thus, for example,

log10 10 = 1 because 10
1 = 10

log10 100 = 2 because 10
2 = 100

log10 1 = 0 because 10
0 = 1

log10 01 = −1 because 10−1 = 01
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x

y  logbx

1 b
0

1

and, similarly,

log2 2 = 1 because 2
1 = 2

log2 4 = 2 because 2
2 = 4

log2 1 = 0 because 2
0 = 1

log2
1

4
= −2 because 2−2 = 1

4

Indeed, the log of 1 to any base is 0, because 0 = 1 for number  6= 0. Logs are

defined only for positive numbers . The most commonly used base for logarithms in

mathematics is the base  ≈ 2718; logs to the base  are called natural logs.2
A “typical” log function is graphed in Figure C.1.3.

Logs inherit their properties from the properties of exponents: Because 12 =

1+2 , it follows that

log(12) = log 1 + log 2

Similarly, because 12 = 1−2 ,

log

µ
1

2

¶
= log 1 − log 2

and because  = ()

,

log() =  log 

At one time, the conversion of multiplication into addition, division into subtraction,

and exponentiation into multiplication simplified laborious computations. Although

this motivation has faded, logs still play a prominent role in mathematics and statistics.

An exponential function is a function of the form

 = 

where  is a constant. The most common exponential,  = , is graphed in Figure C.4.

2For a justification of this terminology, see Section C.3.4.
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Figure C.4 Graph of the exponential function  = .

C.2 Limits

Calculus deals with functions of the form  = (). I will consider the case where both

the domain (values of the independent variable ) and range (values of the dependent

variable ) of the function are real numbers. The limit of a function concerns its behavior

when  is near, but not necessarily equal to, a specific value. This is often a useful idea,

especially when a function is undefined at a particular value of .

C.2.1 The “Epsilon-Delta” Definition of a Limit

A function  = () has a limit  at  = 0 (i.e., a particular value of ) if for any

positive tolerance , no matter how small, there exists a positive number  such that the

distance between () and  is less than the tolerance as long as the distance between

 and 0 is smaller than –that is, as long as  is confined to a sufficiently small

neighborhood of width 2 around 0. In symbols:

|()− |  

for all

0  |− 0|  

This possibly cryptic definition is clarified by Figure C.5. Note that (0) need not

equal , and need not exist at all. Indeed, limits are often most useful when () does

not exist at  = 0. The following notation is used:

lim
→0

() = 

We read this expression as, “The limit of the function () as  approaches 0 is .”

C.2.2 Finding a Limit: An Example

Find the limit of

 = () =
2 − 1
− 1
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Figure C.5 lim
→0

() = : The limit of the function () as  approaches 0 is . The gap

in the curve above 0 is meant to suggest that the function is undefined at  = 0.

at 0 = 1:

Notice that (1) =
1− 1
1− 1 =

0

0
is undefined. Nevertheless, as long as  is not exactly

equal to 1, even if it is very close to it, we can divide by − 1:

 =
2 − 1
− 1 =

(+ 1)(− 1)
− 1 = + 1

Moreover, because 0 + 1 = 1 + 1 = 2,

lim
→1

2 − 1
− 1 = lim

→1
(+ 1)

= 1 + 1 = 2

This limit is graphed in Figure C.6.

C.2.3 Rules for Manipulating Limits

Suppose that we have two functions () and () of an independent variable , and

that each function has a limit at  = 0:

lim
→0

() = 

lim
→0

() = 
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Figure C.6 lim→1 2−1
−1 = 2, even though the function is undefined at  = 1.

Then the limits of functions composed from () and () by the arithmetic operations

of addition, subtraction, multiplication, and division are straightforward:

lim
→0

[() + ()] = + 

lim
→0

[()− ()] = + 

lim
→0

[()()] = 

lim
→0

[()()] = 

The last result holds as long as the denominator  6= 0.

C.3 The Derivative of a Function

Now consider a function  = () evaluated at two values of :

at 1: 1 = (1)

at 2: 2 = (2)

The difference quotient is defined as the change in  divided by the change in , as we

move from the point (1 1) to the point (2 2):

2 − 1

2 − 1
=
∆

∆
=

(2)− (1)

2 − 1

where ∆ (“Delta”) is a short-hand denoting “change.” As illustrated in Figure C.7, the

difference quotient is the slope of the line connecting the points (1 1) and (2 2).

The derivative of the function () at  = 1 (so named because it is derived from

the original function) is the limit of the difference quotient ∆∆ as 2 approaches 1
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Figure C.7 The difference quotient ∆∆ is the slope of the line connecting (1 1) and

(2 2).

(i.e., as ∆→ 0):




= lim

2→1

(2)− (1)

2 − 1

= lim
∆→0

(1 +∆)− (1)

∆

= lim
∆→0

∆

∆

The derivative is therefore the slope of the tangent line to the curve () at  = 1, as

shown in Figure C.8.

The following alternative notation is often used for the derivative:




=

()


=  0()

The last form,  0(), emphasizes that the derivative is itself a function of , but the no-
tation employing the differentials  and , which may be thought of as infinitesimally

small values that are nevertheless nonzero, can be productive: In many circumstances

the differentials can be manipulated as if they were numbers.3 The operation of finding

the derivative of a function is called differentiation.

C.3.1 The Derivative as the Limit of the Difference Quotient:

An Example

Given the function  = () = 2, find the derivative  0() for any value of :

3 See, e.g., the “chain rule” for differentiation, introduced in Section C.3.3.
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Figure C.8 The derivative is the slope of the tangent line at  (1).

Applying the definition of the derivative as the limit of the difference quotient,

 0() = lim
∆→0

(+∆)− ()

∆

= lim
∆→0

(+∆)2 − 2

∆

= lim
∆→0

2 + 2∆+ (∆)2 − 2

∆

= lim
∆→0

2∆+ (∆)2

∆

= lim
∆→0

(2+∆)

= lim
∆→0

2+ lim
∆→0

∆

= 2+ 0 = 2

Notice that division by ∆ is justified here, because although ∆ approaches 0 in the

limit, it never is exactly equal to 0. For example, the slope of the curve  = () = 2

at  = 3 is  0() = 2 = 2× 3 = 6.

C.3.2 Derivatives of Powers

More generally, by similar reasoning, the derivative of

 = () = 

is



= −1

For example, the derivative of the function

 = 36
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is



= 6× 36−1 = 185

Moreover, this rule applies as well to negative powers and to fractional powers. For

example, the derivative of the function

 =
1

43
=
1

4
−3

is



= −3× 1

4
−3−1 = −3

4
−4 = − 3

44

and the derivative of the function

 =
√
 = 

1
2

is



= 1

2

1
2
−1 = 1

2
−

1
2 =

1

2
√


C.3.3 Rules for Manipulating Derivatives

Suppose that a function is the sum of two other functions:

() = () + ()

The addition rule for derivatives follows from the addition rule for limits:

0() =  0() + 0()

.For example,

 = 22 + 3+ 4




= 4+ 3 + 0 = 4+ 3

Notice that the derivative of a constant–the constant 4 in the last example–is 0,

because the constant can be expressed as

 = () = 4 = 40

This result makes sense geometrically: A constant is represented as a horizontally line

in the { } plane, and a horizontal line as a slope of 0.
The addition rule, therefore, along with the result that  0() = −1, serves to

differentiate any polynomial function (i.e., any weighted sum of powers of ).

Multiplication and division are more complex. The multiplication rule for deriva-

tives:

() = ()()

0() = ()0() +  0()()

The division rule for derivatives:
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() = ()()

0() =
() 0()− 0()()

[()]
2

For example, the derivative of the function

 = (2 + 1)(23 − 3)

is



= (2 + 1)(62 − 3) + 2(23 − 3)

and the derivative of the function

 =


2 − 3+ 5
is




=

2 − 3+ 5− (2− 3)
(2 − 3+ 5)2

=
−2 + 5

(2 − 3+ 5)2

The chain rule: If  = () and  = (), then  is indirectly a function of :

 =  [()] = ()

The derivative of  with respect to  is

0() =



=




× 



as if the differential  in the numerator and the denominator can be cancelled.4

For example, given the function

 = (2 + 3+ 6)5

find the derivative  of  with respect to :

This problem could be solved by expanding the power–that is, by multiplying the

expression in parentheses by itself five times–but that would be tedious in the extreme.

It is much easier to find the derivative by using the chain rule, introducing a new variable,

, to represent the expression inside the parentheses. Let

 = () = 2 + 3+ 6

Then

 = () = 5

Differentiating  with respect to , and  with respect to , produces




= 54




= 2+ 3

4The differentials are not ordinary numbers, so thinking of the chain rule as simultaneously dividing

and multiplying by the differential  is a heuristic device, illustrating how the notation for the derivative

using differentials proves to be productive.
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Applying the chain rule,




=




× 



= 54(2+ 3)

Finally, substituting for ,




= 5(2 + 3+ 6)4(2+ 3)

The use of the chain rule in this example is typical, introducing an “artificial” variable

() to simplify the structure of the problem.

C.3.4 Derivatives of Logs and Exponentials

Logarithms and exponentials often occur in statistical applications, and so it is useful

to know how to differentiate these functions.

The derivative of the log function  = log() is

 log 


=
1


= −1

Recall that log is the natural-log function, that is, log to the base  ≈ 2718. Indeed,
the simplicity of its derivative is one of the reasons that it is “natural” to use the base

 for the natural logs.

The derivative of the exponential function  =  is




= 

The derivative of the exponential function  =  for any constant  (i.e., not necessarily

) is




=  log 

C.3.5 Second-Order and Higher-Order Derivatives

Because derivatives are themselves functions, they can be differentiated. The second

derivative of the function  = () is therefore defined as

 00() =
2

2
=

 0()


Notice the alternative notation.

Likewise, the third derivative of the function  = () is the derivative of the second

derivative,

 000() =
3

3
=

 00()


and so on for higher-order derivatives.

For example, the function

 = () = 54 + 32 + 6
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Figure C.9 The derivative (i.e., the slope of the function) is 0 at a minimum or maximum.

has the derivatives

 0() = 203 + 6

 00() = 602 + 6

 000() = 120

 0000() = 120

 00000() = 0

All derivatives beyond the fifth-order are also 0.

C.4 Optimization

An important application of derivatives, both in statistics and more generally, is to

maximization and minimization problems: that is, finding maximum and minimum

values of functions (e.g., maximum likelihood estimation; least squares estimation).

Such problems are collectively called optimization.

As illustrated in Figure C.9, when a function is at a relative maximum or relative

minimum (i.e., a value higher than or lower than surrounding values) or at an absolute

or global maximum or minimum (a value at least as high or low as all other values

of the function), the tangent line to the function is flat, and hence the function has a

derivative of 0 at that point. A function can also have a 0 derivative, however, at a

point that is neither a minimum nor a maximum, such as at a point of inflection–that

is, a point where the direction of curvature changes, as in Figure C.10.

To distinguish among the three cases–minimum, maximum, or neither–we can

appeal to the value of the second derivative (see Figure C.11).

• At a minimum, the first derivative  0() is changing from negative, through 0,

to positive–that is, the first derivative is increasing, and therefore the second

derivative  00() is positive: The second derivative indicates change in the first
derivative just as the first derivative indicates change in the original function.
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Figure C.11 The first derivative (the slope of the function) is increasing where the function

() is at a minimum and decreasing at a maximum.
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Figure C.12 An example of a function and its first and second derivatives.

• At a maximum, the first derivative  0() is changing from positive, through 0,

to negative–the first derivative is decreasing, and therefore the second derivative

 00() is negative.

The relationships among the original function, the first derivative, and the second

derivative are illustrated in Figure C.12: The first derivative is 0 at the two minima and

at the (relative) maximum; the second derivative is positive at the two minima, and

negative at the maximum.

C.4.1 Optimization: An Example

Find the extrema (minima and maxima) of the function

() = 23 − 92 + 12+ 6
The function is shown in Figure C.13. By the way, locating stationary points–points

at which the first derivative is 0–and determining whether they are minima or maxima

(or neither), is helpful in graphing functions.
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Figure C.13 Finding the extrema of the function  = () = 23 − 92 + 12+ 6.

The first and second derivatives of the function are

 0() = 62 − 18+ 12
 00() = 12− 18

Setting the first derivative to 0, and solving for the values of  that satisfy the resulting

equation, produces the following results:

62 − 18+ 12 = 0
2 − 3+ 2 = 0

(− 2)(− 1) = 0

The two roots, at which  0() is 0, are therefore  = 2 and  = 1.

• For  = 2,

(2) = 2× 23 − 9× 22 + 12× 2 + 6 = 10
 0(2) = 6× 22 − 18× 2 + 12 = 0X
 00(2) = 12× 2− 18 = 6

Because  00(2) is positive, the point (2 10) represents a (relative) minimum.

• Likewise, for  = 1,

(1) = 2× 13 − 9× 12 + 12× 1 + 6 = 11
 0(1) = 6× 12 − 18× 1 + 12 = 0X
 00(1) = 12× 1− 18 = −6

Because  00(1) is negative, the point (1 11) represents a (relative) maximum.
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C.5 Multivariable and Matrix Differential Calculus

Multivariable differential calculus–the topic of this section–finds frequent application

in statistics. The essential ideas of multivariable calculus are straightforward extensions

of calculus of a single independent variable, but the topic is frequently omitted from

introductory treatments of calculus.

C.5.1 Partial Derivatives

Consider a function  = (1, 2     ) of several independent variables. The partial

derivative of  with respect to a particular  is the derivative of (1, 2     )

treating the other ’s constant. To distinguish it from the ordinary derivative ,

the standard notation for the partial derivative uses Greek deltas in place of ’s: .

For example, for the function

 = (1 2) = 21 + 31
2
2 + 32 + 6

the partial derivatives with respect to 1 and 2 are



1
= 21 + 3

2
2 + 0 + 0 = 21 + 3

2
2



2
= 0 + 612 + 3

2
2 + 0 = 612 + 3

2
2

The “trick” in partial differentiation with respect to  is to treat all of the other ’s as

constants (i.e., literally to hold other ’s constant). Thus, when we differentiate with

respect to 1, terms such as 
2
2 and 32 are constants.

The partial derivative (1, 2     )1 gives the slope of the tangent hyper-

plane to the function (1 2     ) in the direction of 1. For example, the tangent

plane to the function

(1 2) = 21 + 12 + 22 + 10

above the pair of values 1 = 1, 2 = 2 is shown in Figure C.14.

At a local minimum or maximum, the slope of the tangent hyperplane is 0 in all

directions. Consequently, to minimize or maximize a function of several variables, we

have to differentiate the function with respect to each variable, set the partial derivatives

to 0, and solve the resulting set of simultaneous equations.5

Let us, for example, find the values of 1 and 2 that minimize the function

 = (1 2) = 21 + 12 + 22 + 10

Differentiating,



1
= 21 + 2



2
= 1 + 22

Setting these partial derivatives to 0 produces the unique solution 1 = 0, 2 = 0. In

this case, the solution is particularly simple because the partial derivatives are linear

functions of 1 and 2. The value of the function at its minimum is

 = 02 + (0× 0) + 02 + 10 = 10
5 I will explain in Section C.5.3 how to distinguish maxima from minima.
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Figure C.14 The function  = (1, 2) = 21 + 12 + 22 + 10, showing the tangent plane

at 1 = 1, 2 = 2.

The slopes of the tangent plane above the pair of values 1 = 1, 2 = 2, illustrated in

Figure C.14, are



1
= 2(1) + 2 = 4



2
= 1 + 2(2) = 5

C.5.2 Lagrange Multipliers for Constrained Optimization

The method of Lagrange multipliers6 permits us to optimize a function of the form

 = (1 2     ) subject to a constraint of the form (1 2     ) = 0. The

method, in effect, incorporates the constraint into the set of partial derivatives.

Here is a simple example: Minimize

 = (1 2) = 21 + 22

subject to the restriction that 1+2 = 1. (In the absence of this restriction, it is obvious

that 1 = 2 = 0 minimizes the function.) To solve this constrained minimization

problem:

1. Rewrite the constraint in the required form, (1 2     ) = 0. That is, 1 +

2 − 1 = 0.
2. Construct a new function incorporating the constraint. In the general case, this

function takes the form

(1 2      ) ≡ (1 2     )− × (1 2     )

The new independent variable  is called a Lagrange multiplier. For the example,

(1 2 ) ≡ 21 + 22 − (1 + 2 − 1)
6The method is named after the 18th-century French mathematician J. L. Lagrange.
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3. Find the values of 1 2      that (along with ) optimize the function (1,

2      ). That is, differentiate (1, 2      ) with respect to each of

1, 2      and ; set the +1 partial derivatives to 0; and solve the resulting

system of simultaneous equations for 1, 2      and . For the example,

(1 2 )

1
= 21 − 

(1 2 )

2
= 22 − 

(1 2 )


= −1 − 2 + 1

Notice that the partial derivative with respect to , when equated to 0, reproduces

the constraint 1+2 = 1. Consequently, whatever solutions satisfy the equations

produced by setting the partial derivatives to 0, necessarily satisfy the constraint.

In this case, there is only one solution: 1 = 2 = 05 (and  = 1).

The method of Lagrange multipliers easily extends to handle several restrictions, by

introducing a separate Lagrange multiplier for each restriction.

C.5.3 Differential Calculus in Matrix Form

The function  = (1, 2     ) of the independent variables 1, 2      can be

written as the function  = (x) of the vector x = [1, 2     ]
0. The vector partial

derivative of  with respect to x is defined as the column vector of partial derivatives

of  with respect to each of the entries of x:



x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣



1


2
...




⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
If, therefore,  is a linear function of x,

 = a0
(1×)

x
(×1)

= 11 + 22 + · · ·+ 

then  = , and x = a. For example, for

 = 1 + 32 − 53

= [1 3−5]
⎡⎣ 1

2
3

⎤⎦
the vector partial derivative is



x
=

⎡⎣ 1

3

−5

⎤⎦
Alternatively, suppose that  is a quadratic form in x,

 = x0
(1×)

A
(×)

x
(×1)
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where the matrix A is symmetric. Expanding the matrix product gives us

 = 11
2
1 + 22

2
2 + · · ·+ 

2
 + 21212 + · · ·+ 211 + · · ·+ 2−1 −1

and, thus,



= 2(11 + 22 + · · ·+ ) = 2a

0
x

where a0 represents the th row of A. Placing these partial derivatives in a vector

produces x = 2Ax. The vector partial derivatives of linear and quadratic functions

are strikingly similar to the analogous scalar derivatives of functions of one variable:

() =  and (2) = 2.

For example, for

 = [1 2]

∙
2 3

3 1

¸ ∙
1
2

¸
= 221 + 312 + 321 + 22

= 221 + 612 + 22

The partial derivatives are



1
= 41 + 62



2
= 61 + 22

And the vector partial derivative is



x
=

∙
41 + 62
61 + 22

¸
= 2

∙
2 3

3 1

¸ ∙
1
2

¸
X

The so-called Hessian matrix 7 of second-order partial derivatives of the function

 = (x) is defined in the following manner:

2

x x0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

21

2

1 2
· · · 2

1 

2

2 1

2

22
· · · 2

2 
...

...
. . .

...

2

 1

2

 2
· · · 2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For instance, 2(x0Ax)x x0 = 2A, for a symmetric matrix A.
To minimize a function  = (x) of several variables, we can set the vector partial

derivative to 0, x = 0, and solve the resulting set of simultaneous equations for

x, obtaining a solution x∗. This solution represents a (local) minimum of the function

in question if the Hessian matrix evaluated at x = x∗ is positive definite. The solution
7The Hessian is named after the 19th Century German mathematician Ludwig Otto Hesse.
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represents a maximum if the Hessian is negative definite.8 Again, there is a strong

parallel with the scalar results for a single : Recall that the second derivative 22

is positive at a minimum and negative at a maximum.

I showed earlier that the function

 = (1 2) = 21 + 12 + 22 + 10

has a stationary point (i.e., a point at which the partial derivatives are 0) at 1 = 2 =

05. The second-order partial derivatives of this function are

2

1 2
=

2

2 1
= 1

2

21
=

2

22
= 2

The Hessian evaluated at 1 = 2 = 05 (or, indeed, at any point), is, therefore,⎡⎢⎢⎣
2

21

2

1 2

2

2 1

2

22

⎤⎥⎥⎦ =
"
2 1

1 2

#

This matrix is clearly positive definite, verifying that the value  = 10 at 1 = 2 = 05

is a minimum of (1  2).

C.6 Taylor Series

If a function () has infinitely many derivatives (most of which may, however, be zero)

near the value  = 0, then the function can be decomposed into the Taylor series
9

() = (0) +
 0(0)
1!

(− 0) +
 00(0)
2!

(− 0)
2 +

 000(0)
3!

(− 0)
3 + · · · (C.1)

=

∞X
=1

 ()(0)

!
(− 0)



where  () represents the th-order derivative of  , and ! is the factorial of .10

As long as  is sufficiently close to 0, and as long as the function  is sufficiently

well behaved, () may be approximated by taking only the first few terms of the Taylor

series. For example, if the function is nearly quadratic between  and 0, then () can

be approximated by the first three terms of the Taylor expansion, because the remaining

derivatives will be small; similarly, if the function is nearly linear between  and 0,

then () can be approximated by the first two terms.

To illustrate the application of Taylor series, consider the cubic function

() = 1 + 2 + 3

8The square matrix H is positive definite if x0Hx  0 for any nonzero vector x. (See Section B.6.)

A positive-definite Hessian is a sufficient but not necessary condition for a minimum. Likewise, the

square matrix H is negative definite if x0Hx  0 for any nonzero vector x; a negative-definite Hessian

is a sufficient but not necessary condition for a maximum.
9Named after the 18th Century British mathematician Brook Taylor.
10The factorial of a non-negative integer  is defined as ! ≡ (−1)(−2) · · · (2)(1); by convention,

0! and 1! are both taken to be 1.
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Then

 0() = 2+ 32

 00() = 2 + 6

 000() = 6

 ()() = 0 for   3

Let us take 0 = 2; evaluating the function and its derivatives at this value of ,

(2) = 1 + 22 + 23 = 13

 0(2) = 2(2) + 3(2)2 = 16

 00(2) = 2 + 6(2) = 14

 000(2) = 6

Finally, let us evaluate () at  = 4 using the Taylor-series expansion of the function

around 0 = 2:

(4) = (2) +
 0(2)
1!

(4− 2) +  00(2)
2!

(4− 2)2 +  000(2)
3!

(4− 2)3

= 13 + 16(2) +
14

2
(22) +

6

6
(23)

= 81

Checking by evaluating the function directly,

(4) = 1 + 42 + 43 = 1 + 16 + 64 = 81
√

In this case, using fewer than all four terms would produce a poor approximation (be-

cause, of course, the function in cubic).

Taylor-series expansions and approximations generalize to functions of several vari-

ables, most simply when the function is scalar-valued and when we can use a first- or

second-order approximation. Suppose that  = (1, 2     ) = (x), and that we

want to approximate (x) near the value x = x0. Then the secord-order Taylor-series

approximation of (x) is

(x) ≈ (x0) + [g(x0)]
0
(x− x0) + 1

2
(x− x0)0H(x0)(x− x0)

where g(x) ≡ x andH(x) = 2x x0 are, respectively, the gradient and Hessian
of (x), both evaluated at x0. Notice the strong analogy to the first three terms of the

scalar Taylor expansion, given in Equation C.1.

C.7 Essential Ideas of Integral Calculus

C.7.1 Areas: Definite Integrals

Consider the area  under a curve () between two horizontal coordinates, 0 and

1, as illustrated in Figure C.15. This area can be approximated by dividing the line

between 0 and 1 into  small intervals, each of width ∆, and constructing a series

of rectangles just touching the curve, as shown in Figure C.16. The -values defining

the rectangles are

0 0 +∆ 0 + 2∆     0 + ∆
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| | x

fx

x0 x1

area A

Figure C.15 The area  under a function () between 0 and 1.

x

fx

x0

x0  x

x1  x0  nx

Figure C.16 Approximating the area under a curve by summing the areas of rectangles.
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| | x

fx
a b

negative
area

Figure C.17 The integral
R 

() is negative because the  values are negative between the

limits of integration  and .

Consequently the combined area of the rectangles is

−1X
=0

(0 + ∆)∆ ≈ 

The approximation grows better as the number of rectangles  increases (and ∆

grows smaller). In the limit,

 = lim
∆→0
→∞

−1X
=0

(0 + ∆)∆

The following notation is used for this limit, which is called the definite integral of ()

from  = 0 to 1:

 =

Z 1

0

()

Here, 0 and 1 give the limits of integration, while the differential  is the infinitesimal

remnant of the width of the rectangles ∆. The symbol for the integral,
R
, is an

elongated “S,” indicative of the interpretation of the definite integral as the continuous

analog of a sum.

The definite integral defines a signed area, which may be negative if (some) values

of  are less than 0, as illustrated in Figure C.17.

C.7.2 Indefinite Integrals

Suppose that for the function (), there exists a function  () such that

 ()


= ()

That is, () is the derivative of  (). Then  () is called an antiderivative or indefinite

integral of ().
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| | |

fx

x0 x xx

Ax A

Figure C.18 The area () under the curve between the fixed value 0 and another value .

The indefinite integral of a function is not unique, for if  () is an antiderivative of

(), then so is () =  () + , where  is an arbitrary constant (i.e., not a function

of ). Conversely, if  () and () are both antiderivatives of (), then for some

constant , () =  () + .

For example, for () = 3, the function 1
4
4 + 10 is an antiderivative of (), as

are 1
4
4 − 10 and 1

4
4. Indeed, any function of the form  () = 1

4
4 +  will do.

The following notation is used for the indefinite integral: If

 ()


= ()

then we write

 () =

Z
()

where the integral sign appears without limits of integration. That the same symbol is

employed for areas and antiderivatives (i.e., for definite and indefinite integrals), and

that both of these operations are called “integration,” are explained in the following

section.

C.7.3 The Fundamental Theorem of Calculus

Newton and Leibniz figured out the connection between antiderivatives and areas under

curves. The relationship that they discovered between indefinite and definite integrals

is called the fundamental theorem of calculus :Z 1

0

() =  (1)−  (0)

where  (·) is any antiderivative of (·).
Here is a non-rigorous proof of this theorem: Consider the area () under the curve

() between some fixed value 0 and another (moveable) value , as shown in Figure

C.18. The notation () emphasizes that the area is a function of : As we move 

left or right, the area () changes. In Figure C.18,  +∆ is a value slightly to the
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right of , and ∆ is the area under the curve between  and  +∆. A rectangular

approximation to this small area is

∆ ' ()∆

The area ∆ is also

∆ = (+∆)−()

Taking the derivative of ,

()


= lim
∆→0

∆

∆

= lim
∆→0

()∆

∆

= ()

Consequently,

() =

Z
()

a specific, but as yet unknown, indefinite integral of (). Let  () be some other

specific, arbitrary, indefinite integral of (). Then () =  () +  , for some 

(because, as we previously discovered, two indefinite integrals of the same function

differ by a constant). We know that (0) = 0, because () is the area under the

curve between 0 and any , and the area under the curve between 0 and 0 is 0.

Thus,

(0) =  (0) +  = 0

 = − (0)

and, for a particular value of  = 1,

(1) =

Z 1

0

() =  (1)−  (0)

where (recall)  (·) is an arbitrary antiderivative of (·).
For example, let us find the area (evaluate the definite integral)

 =

Z 3

1

(2 + 3)

It is convenient to use11

 () =
1

3
3 + 3

Then

 =  (3)−  (1)

=

µ
1

3
33 + 3× 3

¶
−
µ
1

3
13 + 3× 1

¶
= 18− 31

3
= 142

3

11Reader: Verify that  () is an antiderivative of () = 2 + 3.
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C.8 Recommended Reading

There is an almost incredible profusion of introductory calculus texts, and I cannot

claim to have read more than a few of them. Of these, my favorite is Thompson and

Gardner (1998). For an extensive treatment of calculus of several variables, see Binmore

(1983).
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Appendix D
Probability and Estimation

The purpose of this appendix is to outline basic results in probability and statistical

inference that are employed principally in the starred parts of the text. Material in the

un-starred portions of this appendix is, however, used occasionally in the un-starred

parts of the text. For good reason, elementary statistics courses–particularly in the

social sciences–often provide only the barest introduction to probability and the the-

ory of estimation. After a certain point, however, some background in these topics is

necessary.

In Section D.1, I review concepts in elementary probability theory. Sections D.2 and

D.3 briefly describe a number of probability distributions that are of special importance

in the study of linear and related models. Section D.4 outlines asymptotic distribution

theory, which we occasionally require to determine properties of statistical estimators, a

subject that is taken up in Section D.5. Section D.6, develops the broadly applicable and

centrally important method of maximum-likelihood estimation. The concluding section

of the appendix, Section D.7, introduces Bayesian estimation. Taken together, the

sections of this appendix provide a “crash course” in some of the basics of mathematical

statistics.

D.1 Elementary Probability Theory

D.1.1 Probability Basics

In probability theory, an experiment is a repeatable procedure for making an observa-

tion; an outcome is a possible observation resulting from an experiment; and the sample

space of the experiment is the set of all possible outcomes. Any specific realization of

the experiment produces a particular outcome in the sample space. Sample spaces may

be discrete and finite, discrete and infinite (i.e., countably infinite1), or continuous.

If, for example, we flip a coin twice and record on each flip whether the coin shows

heads () or tails ( ), then the sample space of the experiment is discrete and finite,

consisting of the outcomes  = {,  , , }. If, alternatively, we flip a coin
repeatedly until a head appears, and record the number of flips required to obtain this

result, then the sample space is discrete and infinite, consisting of the positive integers,

 = {1, 2, 3   }. If we burn a light bulb until it fails, recording the burning time in
1To say that a set is countably infinite means that a one-to-one relationship can be established

between the elements of the set and the natural numbers 0, 1, 2    

65
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hours and fractions of an hour, then the sample space of the experiment is continuous

and consists of all positive real numbers (not bothering to specify an upper limit for the

life of a bulb):  = { :   0}. In this section, I will limit consideration to discrete,
finite sample spaces.

An event is a subset of the sample space of an experiment–that is, a set of outcomes.

An event is said to occur in a realization of the experiment if one of its constituent

outcomes occurs. For example, for  = {,  ,  }, the event  ≡ {,

}, representing a head on the first flip of the coin, occurs if we obtain either the
outcome  or the outcome  .

Axioms of Probability

Let  = {1, 2     } be the sample space of an experiment; let 1 ≡ {1}, 2 ≡
{2}      ≡ {} be the simple events, each consisting of one of the outcomes; and
let the event  = {,      } be any subset of .2 Probabilities are numbers

assigned to events in a manner consistent with the following axioms (rules):

P1: Pr() ≥ 0: The probability of an event is nonnegative.
P2: Pr() = Pr() +Pr()+ · · ·+Pr(): The probability of an event is the sum

of probabilities of its constituent outcomes.

P3: Pr() = 1 and Pr(∅) = 0, where ∅ is the empty event, which contains no outcomes:
The sample space is exhaustive–some outcome must occur.

Suppose, for example, that all outcomes in the sample space  = {,  , ,

} are equally likely,3 so that

Pr() = Pr( ) = Pr() = Pr( ) = 25

Then, for  ≡ {}, Pr() = 25 + 25 = 5.

In classical statistics, the perspective adopted in most applications of statistics (and,

with few exceptions, in the body of the text), probabilities are interpreted as long-

run proportions. Thus, if the probability of an event is 1
2
, then the event will occur

approximately half the time when the experiment is repeated many times, and the

approximation is expected to improve as the number of repetitions increases. This

is sometimes termed an objective or frequentist interpretation of probability–that is,

probabilities are interpreted as long-run relative frequencies (proportions).4

Relations Among Events, Conditional Probability, and Independence

A number of important relations can be defined among events. The intersection of

two events, 1 and 2, denoted 1 ∩ 2, contains all outcomes common to the two;

Pr(1 ∩ 2) is thus the probability that both 1 and 2 occur simultaneously. If

1∩2 = ∅, then 1 and 2 are said to be disjoint or mutually exclusive. By extension,
the intersection of many events 1∩2∩· · ·∩ contains all outcomes that are members

of each and every event. Consider, for example, the events 1 ≡ {} (a head on
the first trial), 2 ≡ {} (a head on the second trial), and 3 ≡ { } (a
tail on the first trial). Then 1 ∩2 = {} 1 ∩3 = ∅ and 2 ∩3 = {}.

2The subscripts ,      are each (different) numbers between 1 and .
3Equally likely outcomes produce a simple example–and correspond to a “fair” coin “fairly”

flipped–but any assignment of probabilities to outcomes that sum to 1 is consistent with the axioms.
4Cf., Section D.7 on Bayesian statistical inference.
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The union of two events 1 ∪ 2 contains all outcomes that are in either or both
events; Pr(1 ∪ 2) is the probability that 1 occurs or that 2 occurs (or that both
occur). The union of several events 1 ∪2 ∪ · · ·∪ contains all outcomes that are in

one or more of the events. If these events are disjoint, then

Pr(1 ∪2 ∪ · · · ∪) =

X
=1

Pr()

otherwise

Pr(1 ∪2 ∪ · · · ∪) 

X
=1

Pr()

(because some outcomes contribute more than once when the probabilities are summed).

For two events,

Pr(1 ∪2) = Pr(1) + Pr(2)− Pr(1 ∩2)
Subtracting the intersection corrects for double counting. To extend the previous ex-

ample, assuming equally likely outcomes (where, recall, events 1 and 3 are disjoint,

but 1 and 2 are not),

Pr(1 ∪3) = Pr(   ) = 1

= Pr(1) + Pr(3)

= 5 + 5

Pr(1 ∪2) = Pr( ) = 75

= Pr(1) + Pr(2)− Pr(1 ∩2)
= 5 + 5− 25

The conditional probability of 2 given 1 is

Pr(2|1) ≡ Pr(1 ∩2)
Pr(1)

The conditional probability is interpreted as the probability that 2 will occur if 1 is

known to have occurred. Two events are independent if Pr(1 ∩2) = Pr(1) Pr(2).5
Independence of 1 and 2 implies that Pr(1) = Pr(1|2) and that Pr(2) =
Pr(2|1): That is, the unconditional probability of each of two independent events
is the same as the conditional probability of that event given the other. More generally,

a set of events {1, 2     } is independent if, for every subset {      }
containing two or more of the events,

Pr( ∩ ∩ · · · ∩) = Pr() Pr() · · ·Pr()

Appealing once more to our example, the probability of a head on the second trial (2)

given a head on the first trial (1) is

Pr(2|1) = Pr(1 ∩2)
Pr(1)

=
25

5
= 5

= Pr(2)

5 Independence is different from disjointness: If two events are disjoint, then they cannot occur

together, and they are, therefore, dependent.
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Likewise, Pr(1 ∩ 2) = 25 = Pr(1) Pr(2) = 5 × 5. The events 1 and 2 are,

therefore, independent.

The difference between two events 1 − 2 contains all outcomes in the first event

that are not in the second. The difference  ≡  −  is called the complement of the

event . Note that Pr() = 1 − Pr(). From the example, where 1 ≡ {}
with all outcomes equally likely, Pr(1) = Pr( ) = 5 = 1− 5.

Bonferroni Inequalities

Let  ≡ 1 ∩2 ∩ · · ·. Then  = 1 ∪2 ∪ · · · ∪. Applying previous results,

Pr(1 ∩2 ∩ · · · ∩) = Pr() = 1− Pr() (D.1)

≥ 1−
X
=1

Pr()

Suppose that all of the events 1 2      have equal probabilities, say Pr() = 1−
[so that Pr() = ]. Then

Pr(1 ∩2 ∩ · · · ∩) ≡ 1−  (D.2)

≥ 1− 

Equation D.2 and the more general Equation D.1 are called Bonferroni inequalities.6

Equation D.2 has the following application to simultaneous statistical inference:

Suppose that  is the Type I error rate for each of  non-independent statistical tests.

Let  represent the combined Type I error rate for the  tests–that is, the probability

of falsely rejecting at least one of  true null hypotheses. Then  ≤ . For instance,

if we test 20 true statistical hypotheses, each at a significance level of .01, then the

probability of rejecting at least one hypothesis is at most 20× 01 = 20 (i.e., no more

than one chance in five)–a sober reminder that “data dredging” can prove seriously

misleading.

D.1.2 Random Variables

A random variable is a function that assigns a number to each outcome of the sample

space of an experiment. For the sample space  = {,  , , }, introduced
earlier, a random variable  that counts the number of heads in an outcome is defined

as follows:
Outcome Value  of 

 2

 1

 1

 0

If, as in this example,  is a discrete random variable, then we write () for

Pr( = ), where the uppercase letter  represents the random variable, while the

lowercase letter  denotes a particular value of the variable. The probabilities ()

for all values of  comprise the probability distribution of the random variable. If, for

example, each of the four outcomes of the coin-flipping experiment has probability .25,

6The Bonferroni inequalities are named after Carlo Emilio Bonferroni, a 20th Century Italian math-

ematician.
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then the probability distribution of the number of heads is

 ()

 =⇒ 0 .25

  =⇒ 1 .50

 =⇒ 2 .25

sum 1.00

The table shows the outcomes that map into each value  of the random variable.

The cumulative distribution function (CDF ) of a random variable , written  (),

gives the probability of observing a value of the variable that is less than or equal to a

particular value:

 () ≡ Pr( ≤ ) =
X
0≤

(0)

For the example,

  ()

0 .25

1 .75

2 1.00

Random variables defined on continuous sample spaces may themselves be contin-

uous. We still take  () as Pr( ≤ ), but it generally becomes meaningless to refer

to the probability of observing individual values of . The probability density func-

tion () is, nevertheless, the continuous analog of the discrete probability distribution,

defining () ≡  (). Reversing this relation,7  () =
R 
−∞ () ; and

Pr(0 ≤  ≤ 1) =  (1)−  (0) =

Z 1

0

() 

Thus, as illustrated in Figure D.1, areas under the density function are interpreted as

probabilities.

A particularly simple continuous probability distribution is the rectangular distrib-

ution:

() =

⎧⎪⎨⎪⎩
0   
1

− 
 ≤  ≤ 

0   

This density function is pictured in Figure D.2(), and the corresponding cumulative

distribution function is shown in Figure D.2(). The total area under a density function

must be 1; here, Z ∞
−∞

() =

Z 



() =
1

− 
(− ) = 1

The support of a random variable is the set of values for which the probability or

probability density is nonzero; the support of the rectangular distribution is therefore

 ≤  ≤ .

7 If you are unfamiliar with integral calculus (which is described in Section C.7), do not be too

concerned: The principal point to understand is that areas under the density curve () are interpreted

as probabilities, and that the height of the CDF  () gives the probability of observing values of 

less than or equal to the value . The integral sign

is the continuous analog of a sum, and represents

the area under a curve.
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X

p(x)

x0 x1

Prx0< X < x1

Figure D.1 Areas under the probability density function () are interpreted as probabilities.

p(x) P(x)

X Xa b a b

0

1

(a) (b)

Figure D.2 () The probability density function (), and () the cumulative distribution

function  () for the rectangular distribution.
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Two fundamental properties of a random variable are its expected value (or mean)

and its variance.8 The expected value specifies the center of the probability distribution

of the random variable (in the same sense as the mean of a set of scores specifies the

center of their distribution), while the variance indicates how spread out the distribution

is around its expectation. The expectation is interpretable as the mean score of the

random variable that would be observed over many repetitions of the experiment, while

the variance is the mean-squared distance between the scores and their expectation.

In the discrete case, the expectation of a random variable , symbolized by ()

or  , is given by

() ≡
X
all 

()

The analogous formula for the continuous case is

() ≡
Z ∞
−∞

() 

The variance of a random variable , written  () or 2 , is defined as [( −)
2].

Thus, in the discrete case,

 () ≡
X
all 

(− )
2()

while, in the continuous case,

 () ≡
Z ∞
−∞
(− )

2() 

The variance is expressed in the squared units of the random variable (e.g., “squared

number of heads”), but the standard deviation  ≡ +
√
2 is measured in the same units

as the variable.

For our example,

 () () −  (− )2()

0 25 000 −1 025

1 50 050 0 000

2 25 050 1 025

sum 1.00  = 100 2 = 050

Thus, () = 1,  () = 05, and  =
√
05 ≈ 0707.

The joint probability distribution of two discrete random variables 1 and 2 gives

the probability of simultaneously observing any pair of values for the two variables. We

write 12(1 2) for Pr(1 = 1 and 2 = 2); it is usually unambiguous to drop the

subscript on , simply writing (1, 2). The joint probability density (1 2) of two

continuous random variables is defined analogously. Extension to the joint probability or

joint probability density (1, 2     ) of several random variables is straightforward.

To distinguish it from the joint probability distribution, we call 1(1) the marginal

probability distribution or marginal probability density for 1. Note that 1(1) =P
2
(1, 2) or 1(1) =

R∞
−∞ (1, 2) 2. We usually drop the subscript, to write

(1).

8The expectation and variance are undefined for some random variables, a possibility that I will

ignore here.
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In the fair coin-flipping experiment, for example, let 1 count the number of heads,

and let 2 = 1 if both coins are the same and 0 if they are different:

Outcome Pr 1 2
 25 2 1

 25 1 0

 25 1 0

 25 0 1

The joint and marginal distributions for 1 and 2 are as follows:

(1, 2)

2
1 0 1 (1)

0 0 25 25

1 50 0 50

2 0 25 25

(2) 50 50 100

The conditional probability or conditional probability density of 1 given 2 is

1|2(1|2) =
12(1 2)

2(2)

As before, it is generally convenient to drop the subscript, writing (1|2). For our
example, (1|2) is

(1|2)
2

1 0 1

0 0 .5

1 1.0 0

2 0 .5

sum 1.0 1.0

The conditional expectation of 1 given 2 = 2–written 1|2(1|2) or, more
compactly, (1|2)–is found from the conditional distribution 1|2(1|2), as is the
conditional variance of 1 given 2 = 2, written 1|2(1|2) or  (1|2). Using the
illustrative conditional distributions (1|2),

(1|0) = 0(0) + 1(1) + 0(2) = 1
 (1|0) = 0(0− 1)2 + 1(1− 1)2 + 0(2− 1)2 = 0
(1|1) = 5(0) + 0(1) + 5(2) = 1

 (1|1) = 5(0− 1)2 + 0(1− 1)2 + 5(2− 1)2 = 1
The random variables 1 and 2 are said to be independent if (1) = (1|2) for

all values of 1 and 2; that is, when 1 and 2 are independent, the marginal and

conditional distributions of 1 are identical. Equivalent conditions for independence are

(2) = (2|1) and (1 2) = (1)(2): When 1 and 2 are independent, their

joint probability or probability density is the product of their marginal probabilities

or densities. In our example, it is clear that 1 and 2 are not independent. More

generally, the set of  random variables {1, 2    } is independent if for every
subset {,     } of size  = 2 or larger,

(      ) = ()() · · · ()
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The covariance of two random variables is a measure of their linear dependence:

(12) = 12 ≡ [(1 − 1)(2 − 2)]

When large values of 1 are associated with large values of 2 (and, conversely, small

values with small values), the covariance is positive; when large values of 1 are as-

sociated with small values of 2 (and vice versa), the covariance is negative. The

covariance is 0 otherwise, for instance–but not exclusively–when the random vari-

ables are independent. In our previous example, 1 and 2 are not independent, but

12 is nevertheless 0 (as the reader can verify). The covariance of a variable with itself

is its variance: (, ) =  ().

The correlation 12 ≡ 1212 between two random variables 1 and 2 is a

normalized version of the covariance. The smallest possible value of the correlation,  =

−1, is indicative of a perfect inverse linear relationship between the random variables,

while the largest value,  = 1, is indicative of a perfect direct linear relationship;  = 0

corresponds to a covariance of 0 and indicates the absence of a linear relationship.

Vector Random Variables*

It is often convenient to write a collection of random variables as a vector random

variable: for example, x
(×1)

= [12    ]
0. The expectation of a vector random

variable is simply the vector of expectations of its elements:

(x) = μ ≡ [(1) (2)     ()]
0

The variance-covariance matrix of a vector random variable x is defined in analogy to

the scalar variance as

 (x) = Σ
(×)

≡ [(x− μ)(x− μ)0] =

⎡⎢⎢⎢⎣
21 12 · · · 1
21 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎤⎥⎥⎥⎦
The diagonal entries of  (x) are the variances of the ’s, and the off-diagonal entries

are their covariances. The variance-covariance matrix  (x) is symmetric and positive

semi-definite.9 The covariance matrix of two vector random variables x
(×1)

and y
(×1)

is

(xy) = Σ

(×)
≡ [(x− μ)(y− μ)0]

and consists of the covariances between pairs of ’s and  ’s.

D.1.3 Transformations of Random Variables

Suppose that the random variable  is a linear function  +  (where  and  are

constants) of a discrete random variable , which has expectation  and variance 
2
 .

Then

( ) =  =
X


(+ )()

= 
X

() + 
X

()

= + 

9 See Section B.6.
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and (employing this property of the expectation operator)

 ( ) = [( −  )
2] = {[(+ )− (+ )]

2}
= 2[( − )

2] = 22

Now, let  be a linear function 11 + 22 of two discrete random variables 1

and 2, with expectations 1 and 2, variances 
2
1 and 22, and covariance 12. Then

( ) =  =
X
1

X
2

(11 + 22)(1 2)

=
X
1

X
2

11(1 2) +
X
1

X
2

22(1 2)

= 1
X
1

1(1) + 2
X
2

2(2)

= 11 + 22

and

 ( ) = [( −  )
2]

= {[(11 + 22)− (11 + 22)]
2}

= 21[(1 − 1)
2] + 22[(2 − 2)

2]

+ 212[(1 − 1)(2 − 2)]

= 21
2
1 + 22

2
2 + 21212

When 1 and 2 are independent and, consequently, 12 = 0, this expression simplifies

to  ( ) = 21
2
1 + 22

2
2 .

Although I have developed these rules for discrete random variables, they apply

equally to the continuous case. For instance, if  = +  is a linear function of the

continuous random variable , then10

( ) =

Z ∞
−∞
(+ )() 

= 

Z ∞
−∞

() + 

Z ∞
−∞

() 

= + ()

Transformations of Vector Random Variables*

These results generalize to vector random variables in the following manner: Let y
(×1)

be a linear transformation A
(×)

x
(×1)

of the vector random variable x, which has expec-

tation (x) = μ and variance-covariance matrix  (x) = Σ. Then it can be shown

(in a manner analogous to the scalar proofs given previously) that

(y) = μ = Aμ

 (y) = Σ = AΣA
0

10 If you are unfamiliar with calculus, then simply think of the integral

as the continuous analog of

the sum

.
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If the entries of x are pair-wise independent, then all of the off-diagonal entries of Σ

are 0, and the variance of each entry of y takes an especially simple form:

2 =

X
=1

2
2


At times, when y = (x), we need to know not only (y) and  (y), but also

the probability distribution of y. Indeed, the transformation (·) may be nonlinear.
Suppose that there is the same number of elements  in y and x; that the function  is

differentiable; and that  is one to one over the domain of x-values under consideration

(i.e., there is a unique pairing of x-values and y-values). This last property implies that

we can write the reverse transformation x = −1(y). The probability density for y is
given by

(y) = (x)

¯̄̄̄
det

µ
x

y

¶¯̄̄̄
= (x)

¯̄̄̄
det

µ
y

x

¶¯̄̄̄−1
where |det(xy)|, called the Jacobian of the transformation,11 is the absolute value
of the (× ) determinant

det

⎡⎢⎢⎢⎢⎣
1

1
· · · 

1
...

. . .
...

1


· · · 



⎤⎥⎥⎥⎥⎦
and |det(yx)| is similarly defined.

D.2 Some Discrete Probability Distributions

In this section, I define four important families of discrete probability distributions: the

binomial distributions; their generalization, the multinomial distributions; the Poisson

distributions, which can be construed as an approximation to the binomial; and the

negative binomial distributions. It is sometimes convenient to refer to a family of prob-

ability distributions in the singular–for example, the “binomial distribution,” rather

than the “binomial distributions.”

D.2.1 The Binomial Distributions

The coin-flipping experiment described at the beginning of Section D.1.2 gives rise to

a binomial random variable that counts the number of heads in two flips of a fair

coin. To extend this example, let the random variable  count the number of heads

in  independent flips of a coin. Let  denote the probability (not necessarily .5) of

obtaining a head on any given flip; then 1− is the probability of obtaining a tail. The
probability of observing exactly  heads and − tails [i.e., Pr( = )] is given by the

binomial distribution:

() =

µ




¶
(1− )− (D.3)

where  is any integer between 0 and , inclusive; the factor (1 − )− is the
probability of observing  heads and − tails in a particular arrangement; and

¡



¢ ≡
11The Jacobian is named after the 19th Century German mathematician Carl Gustav Jacob Jacobi.
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Figure D.3 The binomial distribution for  = 10 and  = 7.

![!(− )!], called the binomial coefficient, is the number of different arrangements

of  heads and −  tails.12

The expectation of the binomial random variable  is () = , and its variance

is  () = (1−). Figure D.3 shows the binomial distribution for  = 10 and  = 7.

D.2.2 The Multinomial Distributions

Imagine  repeated, independent trials of a process that on each trial can give rise to

one of  different categories of outcomes. Let the random variable  count the number

of outcomes in category . Let  denote the probability of obtaining an outcome in

category  on any given trial. Then
P

=1  = 1 and
P

=1 = .

Suppose, for instance, that we toss a die  times, letting 1 count the number of 1’s,

2 the number of 2’s    6 the number of 6’s. Then  = 6, and 1 is the probability

of obtaining a 1 on any toss, 2 is the probability of obtaining a 2, and so on. If the die

is “fair,” then 1 = 2 = · · · = 6 = 16.

Returning to the general case, the vector random variable x ≡ [1, 2    ]
0

follows the multinomial distribution

(x) = (1 2     ) =
!

1!2! · · ·!
1
1 22 · · ·

The rationale for this formula is similar to that of the binomial: 11 22 · · · gives the

probability of obtaining 1 outcomes in category 1, 2 in category 2, and so on, in a

12The exclamation point is the factorial operator:

! ≡ × (− 1)× · · · × 2× 1 for integer   1

≡ 1 for  = 0 or 1
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particular arrangement; and !(1!2! · · ·!) counts the number of different arrange-
ments. Finally, if  = 2, then 2 = − 1, and the multinomial distribution reduces to

the binomial distribution of Equation D.3.

D.2.3 The Poisson Distributions

The 19th century French mathematician S. Poisson introduced the distribution that

bears his name as an approximation to the binomial. The approximation is accurate

when  is large and  is small, and when the product of the two,  ≡ , is neither

large nor small. The Poisson distribution is

() =
−

!
for  = 0 1 2 3    and   0

Although the domain of is all non-negative integers, the approximation works because

() ≈ 0 when  is sufficiently large. (Here,  ≈ 2718 is the mathematical constant.)
The Poisson distribution arises naturally in several other contexts. Suppose, for

example, that we observe a process that randomly produces events of a particular kind

(such as births or auto accidents), counting the number of events  that occur in a

fixed time interval. This count follows a Poisson distribution if the following conditions

hold:

• Although the particular time points at which the events occur are random, the
rate of occurrence is fixed during the interval of observation

• If we focus attention on a sufficiently small subinterval of length , then the

probability of observing one event in that subinterval is proportional to its length,

, and the probability of observing more than one event is negligible. In this

context, it is natural to think of the parameter  of the Poisson distribution as

the rate of occurrence of the event.

• The occurrence of events in non-overlapping subintervals is independent.
The expectation of a Poisson random variable is () = , and its variance is also

 () = . Figure D.4 illustrates the Poisson distribution with rate parameter  = 5

(implying that, on average, five events occur during the fixed period of observation).

D.2.4 The Negative Binomial Distributions

Imagine an experiment in which a coin is flipped independently until a fixed “target”

number of  heads is achieved, and let the random variable  counts the number of

tails that are observed before the target is reached. Then  follows a negative binomial

distribution, with probability function

() =

µ
+ − 1



¶
(1− ) for  = 0 1 2   

where  is the probability of a head on an individual flip of the coin. The expectation

of the negative binomial random variable is () = (1 − ), and its variance is

 () = (1 − )2. Figure D.5 shows the negative binomial distribution for  = 4

and  = 5.

An alternative route to the negative binomial distribution is as a mixture of Poisson

random variables whose means follow a gamma distribution with scale parameter (1−
) and shape parameter  (in which case  need not be an integer).13

13The gamma distribution is described in Section D.3.7.



78 APPENDIX D. PROBABILITY AND ESTIMATION

0 5 10 15

0
.0

0
0

.0
5

0
.1

0
0

.1
5

x

p
(x

)

Figure D.4 The Poisson distribution with rate parameter  = 5.
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Figure D.5 Negative binomial distribution for  = 4 and  = 5.
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Figure D.6 Normal density functions: (0 1), (5 1) and (10 9).

D.3 Some Continuous Distributions

In this section, I describe five families of continuous random variables that play central

roles in the development of linear statistical models: the univariate normal, chi-square,

-, and  -distributions, and the multivariate-normal distribution. I also describe the

inverse Gaussian, gamma, and beta distributions–the first two of these because of their

role in generalized linear models (the subject of Chapter 15), and the last because of

its use in Section D.7 on Bayesian statistical inference. Despite the relatively complex

formulas defining the continuous distributions in this section, I have left most of the

section un-starred, because some familiarity with the normal, chi-square, -, and  -

distributions is important to understanding statistical inference in linear models.14

D.3.1 The Normal Distributions

A normally distributed (or Gaussian15) random variable  has probability density func-

tion

() =
1


√
2
exp

∙
−(− )2

22

¸
where the parameters of the distribution  and 2 are, respectively, the mean and

variance of . There is, therefore, a different normal distribution for each choice of

 and 2; several examples are shown in Figure D.6. I frequently use the abbreviated

notation  ∼ ( 2), meaning that  is normally distributed with expectation  and

variance 2.

14You may, if you wish, skip the formulas in favor of the graphs and verbal descriptions of the several

distributions.
15The Gaussian distributions are named after the great German mathematician Carl Friedrich Gauss

(1777—1855), although they were first introduced in 1734 by the French mathematician Abraham de

Moivre as an approximation to the binomial distribution.
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Figure D.7 The CDF of the unit-normal distribution, Φ().

Of particular importance is the unit-normal random variable  ∼ (0 1), with

density function

() =
1√
2
exp(−22)

The CDF of the unit-normal distribution, Φ(), is shown in Figure D.7.

D.3.2 The Chi-Square (2) Distributions

If 1, 2      are independently distributed unit-normal random variables, then

2 ≡ 21 + 22 + · · ·+ 2

follows a chi-square distribution with  degrees of freedom, abbreviated 2. The prob-

ability density function of the chi-square variable is

 (2) =
1

22Γ(
2
)
(2)(−2)2 exp(−22)

where Γ(·) is the gamma function∗

Γ() =

Z ∞
0

−−1 (D.4)

(for the generic argument ), which is a kind of continuous generalization of the factorial

function; in particular, when  is a non-negative integer, ! = Γ(+ 1). In the current

case,

Γ
³
2

´
≡

⎧⎪⎨⎪⎩
³
2
− 1
´
! for  even³

2
− 1
´³

2
− 2
´
· · ·
µ
3

2

¶µ
1

2

¶√
 for  odd
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Figure D.8 Chi-square density functions: 21, 
2
4, and 

2
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The expectation and variance of a chi-square random variable are (2) = , and

 (2) = 2. Several chi-square distributions are graphed in Figure D.8.

D.3.3 The -Distributions

If  follows a unit-normal distribution, and 2 independently follows a chi-square dis-

tribution with  degrees of freedom, then

 ≡ r
2



is a  random variable with  degrees of freedom, abbreviated .
16 The probability

density function of  is

() =

Γ

µ
+ 1

2

¶
√
Γ

µ


2

¶ × 1µ
1 +

2



¶(+1)2 (D.5)

From the symmetry of this formula around  = 0, it is clear that () = 0.17 It can be

shown that  () = (−2), for   2; thus, the variance of  is large for small degrees

of freedom, and approaches 1 as  increases.

Several -distributions are shown in Figure D.9. As degrees of freedom grow, the

-distribution more and more closely approximates the unit-normal distribution, and in

16 I write a lowercase  for the random variable in deference to nearly universal usage.
17When  = 1, the expectation () does not exist, but the median and mode of  are still 0; 1 is

called the Cauchy distribution, named after the 19th Century French mathematician Augustin Louis

Cauchy.
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Figure D.9  density functions: 2, 8 and (0 1) = ∞.

the limit, ∞ = (0, 1). The normal approximation to the -distribution is quite close

for  as small as 30.

D.3.4 The  -Distributions

Let2
1 and

2
2 be independently distributed chi-square variables with 1 and 2 degrees

of freedom, respectively. Then

 ≡ 2
11

2
22

follows an  -distribution with 1 numerator degrees of freedom and 2 denominator

degrees of freedom, abbreviated 1 2 . The probability density for  is

() =

Γ

µ
1 + 2

2

¶
Γ
³1
2

´
Γ
³2
2

´ µ1
2

¶12
 (1−2)2

µ
1 +

1

2


¶−(1+2)2
(D.6)

Comparing Equations D.5 and D.6, it can be shown that 2 = 1 . As 2 grows larger,

1 2 approaches 
2
1
1 and, in the limit, ∞ = 2.

For 2  2, the expectation of  is ( ) = 2(2 − 2), which is approximately 1
for large values of 2. For 2  4

 ( ) =
222(1 + 2 − 2)

1(2 − 2)2(2 − 4)

Figure D.10 shows several  probability density functions.
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Figure D.10  density functions: 2 10, 4 10, and 4 100.

D.3.5 The Multivariate-Normal Distributions*

The joint probability density for a multivariate-normal vector random variable x = [1,

2    ]
0 with mean vector μ and positive-definite variance-covariance matrix Σ is

given by

(x) =
1

(2)2
√
detΣ

exp

∙
−1
2
(x− μ)0Σ−1(x− μ)

¸

which I abbreviate as x ∼ (μΣ).

If x is multivariately normally distributed, then the marginal distribution of each of

its components is univariate normal, ∼ ( 
2
 );

18 and the conditional distributions

of any subset of variables given the others, (x1|x2), where x = {x1x2}, is normal.
Furthermore, if x ∼ (μ Σ) and

y
(×1)

= A
(×)

x
(×1)

is a linear transformation of x with rank(A) =  ≤ , then y ∼ (Aμ, AΣ
0).

We say that a vector random variable x follows a singular normal distribution if the

covariance matrix Σ of x is singular, but if a maximal linearly independent subset of x

is multivariately normally distributed.

A bivariate-normal density function for 1 = 5, 2 = 6, 1 = 15, 2 = 3 and

12 = 5 [i.e., 12 = (5)(15)(3) = 225] is depicted in Figure D.11.

18The converse is not true: Each  can be univariately normally distributed without x being

multivariate normal.
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Figure D.11 The bivariate-normal density function for 1 = 5, 2 = 6, 1 = 15, 2 = 3 and

12 = 225. The slices of the density surface (representing the conditional

distributions of each variable given values of the other) are normal both in the

direction of 1 and in the direction of 2.

D.3.6 The Inverse Gaussian Distributions*

The inverse-Gaussian distributions are a continuous family indexed by two parameters,

 and , with density function

() =

r


23
exp

∙
−(− )2

22

¸
for   0

The expectation and variance of  are () =  and  () = 3. Figure D.12 shows

several inverse-Gaussian distributions. The variance of the inverse-Gaussian distribution

increases with its mean; skewness also increases with the value of  and decreases with

.

D.3.7 The Gamma Distributions*

The gamma distributions are a family of continuous distributions with probability-

density function indexed by the scale parameter   0 and shape parameter   0:

() =
³


´−1
×
exp

µ−


¶
Γ()

for   0

where Γ(·) is the gamma function.19 The expectation and variance of the gamma

distribution are, respectively, () =  and  () = 2. Figure D.3.7 shows

gamma distributions for scale  = 1 and several values of the shape . (Altering the

scale parameter would change only the labelling of the horizontal axis in the graph.) As

the shape parameter gets larger, the distribution grows more symmetric.

19 See Equation D.4 (on page 80).
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Figure D.12 Inverse-Gaussian distributions for several combinations of values of the parameters
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Figure D.13 Beta distributions for several combinations of values of the scale parameters  and

. As is apparent in panel (), the beta distribution reduces to the rectangular

distribution when  =  = 1. Beta distributions for several combinations of values

of the scale parameters  and . As is apparent in panel (), the beta distribution

reduces to the rectangular distribution when  =  = 1. Symmetric beta

distributions are shown in panel () and asymmetric distributions in panel ().

D.3.8 The Beta Distributions*

The beta distributions are a family of continuous distributions with two shape parame-

ters   0 and   0, and with density function

() =
−1(1− )−1

( )
for 0 ≤  ≤ 1

where

( ) ≡ Γ()Γ()
Γ(+ )

is the beta function. The expectation and variance of the beta distribution are () =

(+ ) and

 () =


(+ )2(+  + 1)

The expectation, therefore, depends upon the relative size of the parameters, with

() = 05 when  = . The skewness of the beta distribution also depends upon the

relative sizes of the parameters, and the distribution is symmetric when  = . The

variance declines as  and  grow. Figure D.13 shows several beta distributions. As is

apparent from these graphs, the shape of the beta distribution is very flexible.

D.4 Asymptotic Distribution Theory: An Introduc-

tion*

Partly because it is at times difficult to determine the small-sample properties of statis-

tical estimators, it is of interest to investigate how an estimator behaves as the sample
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Figure D.14 The first 20 values of the sequence  = 1 + 1, which has the limit  = 1.

size grows. Asymptotic distribution theory provides tools for this investigation. I will

merely outline the theory here: More complete accounts are available in many sources,

including some of the references at the end of this appendix.

D.4.1 Probability Limits

Although asymptotic distribution theory applies to sequences of random variables, it is

necessary first to consider the non-stochastic infinite sequence {1, 2        }.20 As
the reader may be aware, this sequence has a limit  when, given any positive number

, no matter how small, there is a positive integer () such that | − |   for all

  (). In words:  can be made arbitrarily close to  by picking  sufficiently

large.21 To describe this state of affairs compactly, we write lim→∞  = . If, for

example,  = 1+1, then lim→∞  = 1; this sequence and its limit are graphed in

Figure D.14.

Consider now a sequence of random variables {1, 2       }. In a typical
statistical application,  is some estimator and  is the size of the sample from which

the estimator is calculated. Let  ≡ Pr(| − |  ), where  is a constant and  is

a small positive number. Think of  as the probability that  is close to . Suppose

that the non-stochastic sequence of probabilities {1 2        } approaches a limit
of 1;22 that is, lim→∞ Pr(|−|  ) = 1. Then, as  grows, the random variable 

concentrates more and more of its probability in a small region around , a situation

that is illustrated in Figure D.15. If this result holds regardless of how small  is, then

20By “non-stochastic” I mean that each  is a fixed number rather than a random variable.
21The notation () stresses that the required value of  depends on the selected criterion . Cf., the

definition of the limit of a function, discussed in Section C.2.
22To say that {1 2        } is a non-stochastic sequence is only apparently contradictory:

Although these probabilities are based on random variables, the probabilities themselves are each

specific numbers–such as, .6, .9, and so forth.



88 APPENDIX D. PROBABILITY AND ESTIMATION

xn

pxn

a

n = 4

n = 16

n = 64

Figure D.15 plim = : As  grows, the distribution of  concentrates more and more of

its probability in a small region around .

we say that  is the probability limit of , denoted plim = . We generally drop

the subscript  to write the even more compact expression, plim = .

Probability limits have the following very useful property: If plim = , and if  =

() is some continuous function of , then plim = (). Likewise, if plim = ,

plim = , and  = ( ) is a continuous function of and  , then plim = ( ).

D.4.2 Asymptotic Expectation and Variance

We return to the sequence of random variables {1, 2       }. Let  denote
the expectation of . Then {1, 2        } is a non-stochastic sequence. If this
sequence approaches a limit , then we call  the asymptotic expectation of , also

written E().
Although it seems natural to define an asymptotic variance analogously as the limit

of the sequence of variances, this definition is not satisfactory because (as the following

example illustrates) lim→∞  () is 0 in most interesting cases. Suppose that we

calculate the mean  for a sample of size  drawn from a population with mean  and

variance 2. We know, from elementary statistics, that () =  and that

 () = [( − )2] =
2



Consequently, lim→∞  () = 0. Inserting the factor
√
 within the square, however,

produces the expectation {[√( − )]2} = 2. Dividing by  and taking the limit
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yields the answer that we want, defining the asymptotic variance of the sample mean:

V() ≡ lim
→∞

1


{[√( − )]2}

=
1


E{[√( − )]2}

=
2



This result is uninteresting for the present illustration because V() =  ()–

indeed, it is this equivalence that motivated the definition of the asymptotic variance in

the first place–but in certain applications it is possible to find the asymptotic variance

of a statistic when the finite-sample variance is intractable. Then we can apply the

asymptotic result as an approximation in large samples.

In the general case, where  has expectation , the asymptotic variance of  is

defined to be23

V() ≡ 1


E{[√( − )]

2} (D.7)

D.4.3 Asymptotic Distribution

Let {1, 2        } represent the CDFs of a sequence of random variables {1,

2       }. The CDF of  converges to the asymptotic distribution  if, given

any positive number , however small, we can find a sufficiently large () such that

|()− ()|   for all   () and for all values  of the random variable. A familiar

illustration is provided by the central-limit theorem, which (in one of its versions) states

that the mean of a set of independent and identically distributed random variables

with finite expectations and variances follows an approximate normal distribution, the

approximation improving as the number of random variables increases.

The results of this section extend straightforwardly to vectors and matrices: We say

that plim x
(×1)

= a
(×1)

when plim =  for  = 1, 2    . Likewise, plim X
(×)

=

A
(×)

means that plim =  for all  and . The asymptotic expectation of the

vector random variable x
(×1)

is defined as the vector of asymptotic expectations of its

elements, μ = E(x) ≡ [E(1), E(2)     E()]
0. The asymptotic variance-covariance

matrix of x is given by

V(x) ≡ 1


E{[√(x − μ)][

√
(x − μ)]0}

D.5 Properties of Estimators24

An estimator is a sample statistic (i.e., a function of the observations of a sample)

used to estimate an unknown population parameter. Because its value varies from one

sample to the next, an estimator is a random variable. An estimate is the value of an

estimator for a particular sample. The probability distribution of an estimator is called

23 It is generally preferable to define asymptotic expectation and variance in terms of the asymptotic

distribution (see the next section), because the sequences used for this purpose here do not exist in all

cases (see Theil, 1971, pp. 375—376; also see McCallum, 1973). My use of the symbols E(·) and V(·) for
asymptotic expectation and variance is not standard: The reader should be aware that these symbols

are sometimes used in place of (·) and  (·) to denote ordinary expectation and variance.
24Most of the material in this and the following section can be traced to a remarkable, seminal paper

on estimation by Fisher (1922).
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Figure D.16 The estimator 1 is an unbiased estimator of  because (1) = ; the

estimator 2 has a positive bias, because (2)  .

its sampling distribution; and the variance of this distribution is called the sampling

variance of the estimator.

D.5.1 Bias

An estimator  of the parameter  is unbiased if () = . The difference ()− 

(which, of course, is 0 for an unbiased estimator) is the bias of .

Suppose, for example, that we draw  independent observations from a population

with mean  and variance 2. Then the sample mean  ≡ P
 is an unbiased

estimator of , while

2∗ ≡
P
( −)2


(D.8)

is a biased estimator of 2, because (2∗) = [(− 1)]2; the bias of 2∗ is, therefore,
−2. Sampling distributions of unbiased and biased estimators are illustrated in

Figure D.16.

Asymptotic Bias*

The asymptotic bias of an estimator  of  is E() − , and the estimator is asymp-

totically unbiased if E() = . Thus, 2∗ is asymptotically unbiased, because its bias
−2→ 0 as →∞.

D.5.2 Mean-Squared Error and Efficiency

To say that an estimator is unbiased means that its average value over repeated samples

is equal to the parameter being estimated. This is clearly a desirable property for an

estimator to possess, but it is cold comfort if the estimator does not provide estimates
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Figure D.17 Relative efficiency of estimators: Even though it is biased, 2 is a more efficient

estimator of  than the unbiased estimator 1, because the smaller variance of 2
more than compensates for its small bias.

that are close to the parameter: In forming the expectation, large negative estimation

errors for some samples could offset large positive errors for others.

The mean-squared error (MSE ) of an estimator  of the parameter  is literally

the average squared difference between the estimator and the parameter: MSE() ≡
[(−)2]. The efficiency of an estimator is inversely proportional to its mean-squared
error. We generally prefer a more efficient estimator to a less efficient one.

The mean-squared error of an unbiased estimator is simply its sampling variance,

because () = . For a biased estimator,

MSE() = [(− )2]

= {[−() +()− ]2}
= {[−()]2}+ [()− ]2

+ 2[()−()][()− ]

=  () + [bias()]2 + 0

The efficiency of an estimator increases, therefore, as its sampling variance and bias

decline. In comparing two estimators, an advantage in sampling variance can more

than offset a disadvantage due to bias, as illustrated in Figure D.17.

Asymptotic Efficiency*

Asymptotic efficiency is inversely proportional to asymptotic mean-squared error (AMSE)

which, in turn, is the sum of asymptotic variance and squared asymptotic bias.
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D.5.3 Consistency*

An estimator  of the parameter  is consistent if plim = . A sufficient (but not

necessary25) condition for consistency is that an estimator is asymptotically unbiased

and that the sampling variance of the estimator approaches 0 as  increases; this con-

dition implies that the mean-squared error of the estimator approaches a limit of 0.

Figure D.15 (page 88) illustrates consistency, if we construe  as an estimator of .

The estimator 2∗ given in Equation D.8 (on page 90) is a consistent estimator of the
population variance 2 even though it is biased in finite samples.

D.5.4 Sufficiency*

Sufficiency is a more abstract property than unbias, efficiency, or consistency: A statistic

 based on a sample of observations is sufficient for the parameter  if the statistic

exhausts all of the information about  that is present in the sample. More formally,

suppose that the observations 1, 2     are drawn from a probability distribution

with parameter , and let the statistic  ≡ (1, 2    ). Then  is a sufficient

statistic for  if the probability distribution of the observations conditional on the value

of , that is, (1, 2     | = ), does not depend on . The sufficient statistic 

need not be an estimator of .

To illustrate the idea of sufficiency, suppose that  observations are independently

sampled, and that each observation  takes on the value 1 with probability  and the

value 0 with probability 1− .26 I will demonstrate that the sample sum  ≡P
=1

is a sufficient statistic for . If we know the value  of , then there are
¡



¢
different

possible arrangements of the  1’s and − 0’s, each with probability 1¡


¢
.27 Because

this probability does not depend on the parameter , the statistic  is sufficient for .

By a similar argument, the sample proportion  ≡  is also a sufficient statistic. The

proportion –but not the sum –is an estimator of .

The concept of sufficiency can be extended to sets of parameters and statistics: Given

a sample of (possibly multivariate) observations x1, x2    x, a vector of statistics

s = [1, 2     ]
0 ≡ (x1, x2    x) is jointly sufficient for the parameters α = [1,

2     ]
0 if the conditional distribution of the observations given s does not depend

on α. It can be shown, for example, that the mean  and variance 2 calculated from

an independent random sample are jointly sufficient statistics for the parameters  and

2 of a normal distribution (as are the sample sum
P

 and sum of squares
P

2
 ,

which jointly contain the same information as  and 2). A set of sufficient statistics

is called minimally sufficient if there is no smaller sufficient set.

D.6 Maximum-Likelihood Estimation

The method of maximum likelihood provides estimators that have both a reasonable

intuitive basis and many desirable statistical properties. The method is very broadly

applicable and is simple to apply. Moreover, once a maximum-likelihood estimator is

derived, the general theory of maximum-likelihood estimation provides standard errors,

statistical tests, and other results useful for statistical inference. A disadvantage of the

25There are cases in which plim = , but the variance and asymptotic expectation of  do not

exist. See Johnston (1972, p. 272) for an example.
26The Greek letter  is used because the probability cannot be directly observed. Because  is

a probability, it is a number between 0 and 1–not to be confused with the mathematical constant

≈ 31416.
27The random variable  has a binomial distribution: See Section D.2.1.
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method, however, is that it frequently requires strong assumptions about the structure

of the data.

D.6.1 Preliminary Example

Let us first consider a simple example: Suppose that we want to estimate the probability

 of getting a head on flipping a particular coin. We flip the coin independently 10 times

(i.e., we sample  = 10 flips), obtaining the following result: . The

probability of obtaining this sequence–in advance of collecting the data–is a function

of the unknown parameter :

Pr(data|parameter) = Pr(|)
= (1− )(1− )(1− )

= 7(1− )3

The data for our particular sample are fixed, however: We have already collected

them. The parameter  also has a fixed value, but this value is unknown, and so we can

let it vary in our imagination between 0 and 1, treating the probability of the observed

data as a function of . This function is called the likelihood function:

(parameter|data) = (|)

= 7(1− )3

The probability function and the likelihood function are the same equation, but the

probability function is a function of the data with the value of the parameter fixed,

while the likelihood function is a function of the parameter with the data fixed.

Here are some representative values of the likelihood for different values of :28

 (|data) = 7(1− )3

0.0 0.0

.1 .0000000729

.2 .00000655

.3 .0000750

.4 .000354

.5 .000977

.6 .00179

.7 .00222

.8 .00168

.9 .000478

1.0 0.0

The full likelihood function is graphed in Figure D.18. Although each value of (|data)
is a notional probability, the function (|data) is not a probability distribution or a
density function: It does not integrate to 1, for example. In the present instance, the

probability of obtaining the sample of data that we have in hand, ,

is small regardless of the true value of . This is usually the case: Unless the sample

is very small, any specific sample result–including the one that is realized–will have

low probability.

28The likelihood is a continuous function of  for values of  between 0 and 1. This contrasts, in the

present case, with the probability function, because there is a finite number

210 = 1024


of possible

samples.
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Figure D.18 The likelihood function (|) = 7(1− )3.

Nevertheless, the likelihood contains useful information about the unknown parame-

ter . For example,  cannot be 0 or 1, because if it were either of these values, then

the observed data could not have been obtained. Reversing this reasoning, the value

of  that is most supported by the data is the one for which the likelihood is largest.

This value is the maximum-likelihood estimate (MLE), denoted b. Here, b = 7, which

is just the sample proportion of heads, 7/10.

Generalization of the Example*

More generally, for  independent flips of the coin, producing a particular sequence that

includes  heads and −  tails,

(|data) = Pr(data|) = (1− )−

We want the value of  that maximizes (|data), which we often abbreviate (). As
is typically the case, it is simpler–and equivalent–to find the value of  that maximizes

the log of the likelihood, here

log () =  log  + (− ) log(1− ) (D.9)

Differentiating log () with respect to  produces

 log ()


=




+ (− )

1

1− 
(−1)

=



− − 

1− 

Setting the derivative to 0 and solving for  produces the MLE which, as before, is

the sample proportion . The maximum-likelihood estimator is b = . To avoid

this slightly awkward substitution of estimator for estimate in the last step, we usually

replace  by  in the log likelihood function (Equation D.9).
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D.6.2 Properties of Maximum-Likelihood Estimators*

Under very broad conditions, maximum-likelihood estimators have the following general

properties (see the references at the end of this appendix):

• Maximum-likelihood estimators are consistent.
• They are asymptotically unbiased, although they may be biased in finite samples.
• They are asymptotically efficient–no asymptotically unbiased estimator has a
smaller asymptotic variance.

• They are asymptotically normally distributed.
• If there is a sufficient statistic for a parameter, then the maximum-likelihood
estimator of the parameter is a function of a sufficient statistic.

• The asymptotic sampling variance of the MLE b of a parameter  can be obtained
from the second derivative of the log likelihood:

V(b) = 1

−
∙
2 log ()

2

¸ (D.10)

The denominator of V(b) is called the expected or Fisher information,
I() ≡ −

∙
2 log ()

2

¸
In practice, we substitute the MLE b into Equation D.10 to obtain an estimate
of the asymptotic sampling variance, bV(b).29

• (b) is the value of the likelihood function at the MLE b, while () is the

likelihood for the true (but generally unknown) parameter . The log-likelihood-

ratio statistic

2 ≡ −2 log
()

(b) = 2[log (b)− log ()]
follows an asymptotic chi-square distribution with 1 degree of freedom. Because,

by definition, the MLE maximizes the likelihood for our particular sample, the

value of the likelihood at the true parameter value  is generally smaller than at

the MLE b (unless, by good fortune, b and  happen to coincide).

• If b is the MLE of , and if  = () is a function of , then b = (b) is the
MLE of .

Establishing these results is well beyond the scope of this appendix, but the results

do make some intuitive sense. For example, if the log likelihood has a sharp peak,

then the MLE is clearly differentiated from nearby values. Under these circumstances,

the second derivative of the log likelihood is a large negative number; there is a lot

of “information” in the data concerning the value of the parameter; and the sampling

29 It is also possible, and sometimes computationally advantageous, to base an estimate of the variance

of the MLE  on the observed information,
I() ≡ 2 log ()

2
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variance of the MLE is small. If, in contrast, the log likelihood is relatively flat at its

maximum, then alternative estimates quite different from the MLE are nearly as good as

the MLE; there is little information in the data concerning the value of the parameter;

and the sampling variance of the MLE is large.

D.6.3 Statistical Inference: Wald, Likelihood-Ratio, and Score

Tests

The properties of maximum-likelihood estimators described in the previous section lead

directly to three common and general procedures–called the Wald test, the likelihood-

ratio test, and the score test30–for testing the statistical hypothesis 0:  = 0. The

Wald and likelihood-ratio tests can be “turned around” to produce confidence intervals

for .

• Wald test. Relying on the asymptotic31 normality of the MLE b, we calculate the
test statistic

0 ≡ b− 0qbV(b)
which is asymptotically distributed as (0 1) under 0.

• Likelihood-ratio test. Employing the log-likelihood ratio, the test statistic

20 ≡ −2 log
(0)

(b) = 2[log (b)− log (0)]
is asymptotically distributed as 21 under 0.

• Score test. The “score” () is the slope of the log likelihood at a particular value
of .32 At the MLE, the score is 0: (b) = 0. It can be shown that the score

statistic

0 ≡ (0)p
I(0)

is asymptotically distributed as (0, 1) under 0.

Unless the log likelihood is quadratic, the three test statistics can produce somewhat

different results in specific samples, although the tests are asymptotically equivalent.

In certain contexts, the score test has the practical advantage of not requiring the

computation of the MLE b (because 0 depends only on the null value 0, which is
specified in 0). In most instances, however, the LR test is more reliable than the Wald

and score tests in smaller samples.

Figure D.19 shows the relationship among the three test statistics, and clarifies the

intuitive rationale of each: The Wald test measures the distance between b and 0,

using the standard error to calibrate this distance. If b is far from 0, for example, then

doubt is cast on 0. The likelihood-ratio test measures the distance between log (b)
and log (0); if log (b) is much larger than log (0), then 0 is probably wrong.

Finally, the score test statistic measures the slope of log likelihood at 0; if this slope

is very steep, then we are probably far from the peak of the likelihood function, casting

doubt on 0.

30The score test is sometimes called the Lagrange-multiplier test. (Lagrange multipliers are described

in Section C.5.2.)
31Asymptotic results apply approximately, with the approximation growing more accurate as the

sample size  gets larger.
32 *That is, () ≡  log ().
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0̂

logeL
Likelihood-ratio test

Score test

Wald test

Figure D.19 Tests of the hypothesis 0:  = 0: The likelihood-ratio test compares log (b)
to log (0); the Wald test compares b to 0; and the score test examines the
slope of log () at  = 0.

An Illustration*

It is instructive to apply these results to our previous example, in which we sought to

estimate the probability  of obtaining a head from a coin based on a sample of  flips.

Recall that the MLE of  is the sample proportion b = , where counts the number

of heads in the sample. The second derivative of the log likelihood (Equation D.9 on

page 94) is

2 log ()

2
= −

2
−
∙
− −

(1− )2
(−1)

¸
=
− + 2 − 2

2(1− )2

Noting that () = , the expected information is

I() = − + 2
2 − 2

−2(1− 2)
=



(1− )

and the asymptotic variance of b is V(b) = [I()]−1 = (1− ), a familiar result.33

The estimated asymptotic sampling variance is bV(b) = b(1− b).
For our sample of  = 10 flips with  = 7 heads, bV(b) = (7× 3)10 = 00210, and

a 95% asymptotic confidence interval for  based on the Wald statistic is

 = 7± 196×
√
00210 = 7± 290

where, recall, 196 is the standard-normal value with probability 025 to the right.

Alternatively, to test the hypothesis that the coin is fair, 0:  = 5, we can calculate

33 In this case, the asymptotic variance coincides with the exact, finite-sample variance of .
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the Wald test statistic

0 =
7− 5√
00210

= 138

which corresponds to a two-tail -value [from (0, 1)] of .168.

The log likelihood, recall, is

log () =  log  + (−) log(1− )

= 7 log  + 3 log(1− )

Using this equation,

log (b) = log (7) = 7 log 7 + 3 log 3 = −61086
log (0) = log (5) = 7 log 5 + 3 log 5 = −69315

The likelihood-ratio test statistic for 0 is, therefore,

20 = 2[−61086− (−69315)] = 1646

which corresponds to a -value (from 21) of .199.

Finally, for the score test,

() =
 log ()


=




− −

1− 

from which (0) = 75−35 = 8. Evaluating the expected information at 0 produces
I(0) = I(5) = 10(5× 5) = 40. The score statistic is, therefore,

0 =
(0)p
I(0)

=
8√
40
= 1265

for which the two-tail -value [from (0 1)] is .206.

The three tests are in reasonable agreement, but all are quite inaccurate! An exact

test, using the null binomial distribution of  (the number of heads),

() =

µ
10



¶
5510− =

µ
10



¶
510

yields a two-tail -value of .3438 [corresponding to Pr( ≤ 3 or  ≥ 7)].34 We must
be careful in applying asymptotic results to small samples.

D.6.4 Several Parameters*

The maximum-likelihood method can be generalized to simultaneous estimation of sev-

eral parameters. Let 
¡
X

(×)
| α
(×1)

¢
represent the probability or probability density for

 possibly multivariate observations X ( ≥ 1) which depend on  independent para-

meters α.35 The likelihood (α) ≡ (α|X) is a function of the parameters α, and we
seek the values bα that maximize this function. As before, it is generally more conve-

nient to work with log (α) in place of (α). To maximize the likelihood, we find the

vector partial derivative  log (α)α, set this derivative to 0, and solve the resulting

34See Section D.2.1 for a discussion of the binomial distribution.
35To say that the parameters are independent means that the value of none can be obtained from the

values of the others. If there is a dependency among the parameters, then the redundant parameter

can simply be replaced by a function of other parameters.
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matrix equation for bα. If there is more than one root, then we choose the solution that
produces the largest likelihood.

As in the case of a single parameter, the maximum-likelihood estimator is consistent,

asymptotically unbiased, asymptotically efficient, asymptotically normal (but now mul-

tivariate normal), and based on sufficient statistics. The asymptotic variance-covariance

matrix of the MLE is

V(bα)
(×)

=

½
−

∙
2 log (α)

α α0

¸¾−1
(D.11)

The matrix in braces in Equation D.11 is called the expected or Fisher information

matrix, I(α) (not to be confused with the identity matrix I).36 Moreover, if β = (a),

then the MLE of β is bβ = (ba). Notice how the formulas for several parameters closely
parallel those for one parameter.

Generalizations of the score and Wald tests follow directly. The Wald statistic for

0: α = α0 is

20 ≡ (bα−α0)0bV(bα)−1(bα−α0)
The score vector is (α) ≡  log (α)α; and the score statistic is

20 ≡ (α0)
0I(α0)−1(α0)

The likelihood-ratio test also generalizes straightforwardly:

20 ≡ −2 log
∙
(α0)

(bα)
¸

All three test statistics are asymptotically distributed as 2 under 0.

Each of these tests can be adapted to more complex hypotheses. Suppose, for exam-

ple, that we wish to test the hypothesis 0 that  of the  elements of α are equal to

particular values. Let (bα0) represent the maximized likelihood under the constraint
represented by the hypothesis (i.e., setting the  parameters equal to their hypothe-

sized values, but leaving the other parameters free to be estimated); (bα) represents
the globally maximized likelihood when the constraint is relaxed. Then, under the

hypothesis 0,

20 ≡ −2 log
∙
(bα0)
(bα)

¸
has an asymptotic chi-square distribution with  degrees of freedom.

The following example (adapted from Theil, 1971, pp. 389—390) illustrates these

results: A sample of  independent observations is drawn from a normally distributed

population with unknown mean  and variance 2. We want to estimate  and 2. The

likelihood function is

( 2) =

Y
=1

1


√
2
exp

∙
−( − )2

22

¸

= (22)−2 exp

"
− 1

22

X
=1

( − )2

#

and the log likelihood is

log ( 
2) = −

2
log 2 −



2
log 2 − 1

22

X
( − )2

36As before, it is also possible to work with the observed information at the MLE .
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with partial derivatives

 log ( 
2)


=
1

2

X
( − )

log ( 
2)

2
= − 

22
+

1

24

X
( − )2

Setting the partial derivatives to 0 and solving simultaneously for the maximum-likelihood

estimators of  and 2 produces

b = P



= 

b2 = P
( −)2



The matrix of second partial derivatives of the log likelihood is⎡⎢⎢⎣
2 log 

2
2 log 

2

2 log 

2 

2 log 

(2)2

⎤⎥⎥⎦ =
⎡⎢⎣ − 

2
− 1
4

X
( − )

− 1
4

X
( − )



24
− 1

6

X
( − )2

⎤⎥⎦
Taking expectations, noting that ( − ) = 0 and that [( − )2] = 2, produces

the negative of the expected information matrix:

−I( 2) =
⎡⎣ − 

2
0

0 − 

24

⎤⎦
The asymptotic variance-covariance matrix of the maximum-likelihood estimators is, as

usual, the inverse of the information matrix:

V(b b2) = [I( 2)]−1 =
⎡⎢⎣ 2


0

0
24



⎤⎥⎦
The result for the sampling variance of b =  is the usual one (2). The MLE of 2

is biased but consistent (and, indeed, is the estimator 2∗ given previously in Equation
D.8 on page 90).

D.6.5 The Delta Method

As I have explained, if  = (), and if b is the maximum-likelihood estimator of ,
then b = (b) is the maximum-likelihood estimator of . This result implies that b
is asymptotically normally distributed with asymptotic expectation , even when the

function (·) is nonlinear.
The delta method produces an estimate of the asymptotic variance of b based on a

first-order Taylor-series approximation (see Section C.6) to (b) around the true value
of the parameter : b = (b) ≈ () +  0()(b− ) (D.12)

Here,  0() = () is the derivative of () with respect to .
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The first term on the right-hand side of Equation D.12, (), is a constant (because

the parameter  has a fixed value), and the second term is linear in b [again because
, and hence  0(), are constants]; thus

V(b) = [ 0()]2 V(b)
where V(b) is the asymptotic variance of b. In practice, we substitute the MLE b for
 to obtain the estimated asymptotic variance of b:

bV(b) = [ 0(b)]2 V(b)
To illustrate the application of the delta method, recall that the sample proportionb is the maximum-likelihood estimator of the population proportion , with asymptotic

(and, indeed, finite-sample) variance V(b) = (1 − ), where  is the sample size.

The log-odds, or logit, is defined as

Λ = () ≡ log


1− 

The MLE of Λ is therefore bΛ = log[b(1− b)], and the asymptotic sampling variance
of the sample logit is

V(bΛ) = [ 0()]2 V(b)
=

∙
1

(1− )

¸2
(1− )



=
1

(1− )

Finally, the estimated asymptotic sampling variance of the logit is bV(bΛ) = 1[b(1−b)].
The delta method extends readily to functions of several parameters: Suppose that

 ≡ (1 2     ) = (α), and that bα is the MLE of α, with asymptotic covariance
matrix V(bα). Then the asymptotic variance of b = (bα) is

V(b) = [g(α)]0 V(bα)g(α) = X
=1

X
=1

 × b


× b


where g(α) ≡ bα and  is the  th entry of V(bα). The estimated asymptotic
variance of b is thus bV(b) = [g(bα)]0 V(bα)g(bα)
The delta method is not only applicable to functions of maximum-likelihood esti-

mators, but more generally to functions of estimators that are asymptotically normally

distributed.

D.7 Introduction to Bayesian Inference

This section introduces Bayesian statistics, an alternative approach to statistical infer-

ence. The treatment here is very brief because Bayesian methods are used at only two

points in the text: multiple imputation of missing data (in Chapter 20), and model

selection and Bayesian model averaging (in Chapter 22).



102 APPENDIX D. PROBABILITY AND ESTIMATION

D.7.1 Bayes’ Theorem

Recall (from Section D.1.1) the definition of conditional probability : The probability of

an event  given that another event  is known to have occurred is

Pr(|) = Pr( ∩)
Pr()

(D.13)

Likewise, the conditional probability of  given  is

Pr(|) = Pr( ∩)
Pr()

(D.14)

Solving Equation D.14 for the joint probability of  and  produces

Pr( ∩) = Pr(|) Pr()

and substituting this result into Equation D.13 yields Bayes’ Theorem:37

Pr(|) = Pr(|) Pr()
Pr()

(D.15)

Bayesian statistical inference is based on the following interpretation of Equation

D.15: Let  represent some uncertain proposition whose truth or falsity we wish to

establish–for example, the proposition that a parameter is equal to a particular value.

Let  represent observed data that are relevant to the truth of the proposition. We

interpret the unconditional probability Pr(), called the prior probability of , as our

strength of belief in the truth of  prior to collecting data, and Pr(|) as the proba-
bility of obtaining the observed data assuming the truth of –that is, the likelihood of

the data given  (in the sense of the preceding section). The unconditional probability

of the data  is38

Pr() = Pr(|) Pr() + Pr(|) Pr()
Then Pr(|), given by Equation D.15 and called the posterior probability of , repre-
sents our revised strength of belief in  in light of the data .

Bayesian inference is therefore a rational procedure for updating one’s beliefs on the

basis of evidence. This subjectivist interpretation of probabilities contrasts with the

frequentist interpretation of probabilities as long-run proportions.39

Preliminary Example

Consider the following simple (if contrived) example: Suppose that you are given a

gift of two “biased” coins, one of which produces heads with probability Pr() = 3

and the other with Pr() = 8. Each of these coins comes in a box marked with its

bias, but you carelessly misplace the boxes and put the coins in a drawer; a year later,

37Bayes’ theorem is named after its discoverer, the Reverend Thomas Bayes, an 18th Century English

mathematician.
38This is an application of the law of total probability : Given an event  and a set of disjoint events

1      for which


=1 Pr() = 1 (i.e., the events  partition the sample space ),

Pr() =


=1

Pr(|) Pr()

39The frequentist interpretation of probabilities is described in Section D.1.1. Bayes’ Theorem follows

from elementary probability theory whether or not one accepts its subjectivist interpretation, but it is

the latter that gives rise to common procedures of Bayesian statistical inference.
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you do not remember which coin is which. To try to distinguish the coins, you pick

one arbitrarily and flip it 10 times, obtaining the data –that is, a

particular sequence of 7 heads and 3 tails.40 Let  represent the event that the selected

coin has Pr() = 3; then  is the event that the coin has Pr() = 8. Under these

circumstances, it seems reasonable to take as prior probabilities Pr() = Pr() = 5.

The likelihood of the data under  and  is

Pr(|) = 37(1− 3)3 = 0000750

Pr(|) = 87(1− 8)3 = 0016777

Notice that, as is typically the case, the likelihood of the observed data is small in

any event, but the data are much more likely under  than under .41 Using Bayes’

Theorem (Equation D.15), you find the posterior probabilities

Pr(|) = 0000750× 5

0000750× 5 + 0016777× 5
= 0428

Pr(|) = 0016777× 5

0000750× 5 + 0016777× 5
= 9572

suggesting that it is much more probable that the selected coin has Pr() = 8 than

Pr() = 3.

D.7.2 Extending Bayes Theorem

Bayes’ Theorem extends readily to situations in which there are more than two hypothe-

ses  and : Let the various hypotheses be represented by 12    , with prior

probabilities Pr()  = 1      that sum to 1;42 and let  represent the observed

data, with likelihood Pr(|) under hypothesis . Then the posterior probability of

hypothesis  is

Pr(|) = Pr(|) Pr()P
=1 Pr(|) Pr()

(D.16)

The denominator in Equation D.16 insures that the posterior probabilities for the

various hypotheses sum to 1. It is sometimes convenient to omit this normalization,

simply noting that

Pr(|) ∝ Pr(|) Pr()

that is, that the posterior probability of a hypothesis is proportional to the product of

the likelihood under the hypothesis and its prior probability. If necessary, we can always

divide by
P
Pr(|) Pr() to recover the posterior probabilities.

Bayes’ Theorem is also applicable to random variables: Let  represent a parameter

of interest, with prior probability distribution or density (), and let () ≡ (|)
represent the likelihood function for the parameter . Then

(|) = ()()P
all 0 (

0)(0)

40These are the data used in a preliminary example of maximum-likelihood estimation in Section

D.6.
41The likelihood of these data for any value of Pr() between 0 and 1 was shown previously in Figure

D.18 (page 94).
42To employ Bayesian inference, your prior beliefs must be consistent with probability theory, and

so the prior probabilities must sum to 1.
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when the parameter  is discrete, or

(|) = ()()R
(0)(0)0

when, as is more common,  is continuous. In either case,

(|) ∝ ()()

That is, the posterior distribution or density is proportional to the product of the

likelihood and the prior distribution or density. As before, we can if necessary divide

by
P

()() or
R
()() to recover the posterior probabilities or densities.

The following points are noteworthy:

• We require a prior distribution () over the possible values of the parameter 

(the parameter space) to set the machinery of Bayesian inference in motion.

• In contrast to classical statistics, we treat the parameter  as a random vari-

able rather than as an unknown constant. We retain Greek letters for parame-

ters, however, because in contrast to the data, parameters are never known with

certainty–even after collecting data.

Conjugate Priors

The mathematics of Bayesian inference is especially simple when the prior distribution

is selected so that the likelihood and prior combine to produce a posterior distribution

that is in the same family as the prior. In this case, we say that the prior distribution

is a conjugate prior.

At one time, Bayesian inference was only practical when conjugate priors were em-

ployed, limiting its scope of application. Advances in computer software and hardware,

however, make it practical to evaluate mathematically intractable posterior distributions

by simulated random sampling. Such Markov-chain Monte-Carlo (“MCMC”) methods

have produced a flowering of Bayesian applied statistics. Nevertheless, the choice of

prior distribution can be an important one.

D.7.3 An Example of Bayesian Inference

Continuing the previous example, suppose more realistically that you are given a coin

and wish to estimate the probability  that the coin turns up heads, but cannot restrict

 in advance to a small number of discrete values; rather,  could, in principle, be any

number between 0 and 1. To estimate , you plan to gather data by independently

flipping the coin 10 times. We know from our previous work that the likelihood is

() = (1− )10− (D.17)

where  is the observed number of heads. You conduct the experiment, obtaining the

data , and thus  = 7.

The conjugate prior for the likelihood in Equation D.17 is the beta distribution43

() =
−1(1− )−1

( )
for 0 ≤  ≤ 1 and   ≥ 1

43 See Section D.3.8.
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When you multiply the beta prior by the likelihood, you get a posterior density of the

form

(|) ∝ +−1(1− )10−+−1 = 6+(1− )2+

that is, a beta distribution with shape parameters +−1 = 6+ and 10−+−1 = 2+.
Put another way, the prior in effect adds  heads and  tails to the likelihood.

How should you select  and ? One approach would be to reflect your subjective

assessment of the likely value of . For example, you might examine the coin and note

that it seems to be reasonably well balanced, suggesting that  is probably close to 5.

Picking  =  = 16 would in effect confine your estimate of  to the range between 3

and 7.44 If you are uncomfortable with this restriction, then you could select smaller

values of  and : In the extreme,  =  = 1, and all values of  are equally likely–a

so-called flat prior distribution, reflecting complete ignorance about the value of .45

Figure D.7.3 shows the posterior distribution for  under these two priors. Under the

flat prior, the posterior is proportional to the likelihood, and therefore if you take the

mode of the posterior as your estimate of , you get the MLE b = 7.46 The informative

prior  =  = 16, in contrast, has a mode at  ≈ 55 , which is much closer to the mode

of the prior distribution  = 5.

It may be disconcerting that the conclusion should depend so crucially on the prior

distribution, but this result is a product of the very small sample in the example: Recall

that using a beta prior in this case is like adding  +  − 2 observations to the data.
As the sample size grows, the likelihood comes to dominate the posterior distribution,

and the influence of the prior distribution fades.47 In the current example, if the coin

is flipped  times, then the posterior distribution takes the form

(|) ∝ +−1(1− )−+−1

and the numbers of heads  and tails  −  will grow with the number of flips. It is

intuitively sensible that your prior beliefs should carry greater weight when the sample

is small than when it is large.

D.7.4 Bayesian Interval Estimates

As in classical inference, it is desirable not only to provide a point estimate of a pa-

rameter but also to express uncertainty in the estimate. The posterior distribution of

the parameter expresses statistical uncertainty in a direct form. From the posterior

distribution, one can compute various kinds of Bayesian interval estimates, which are

analogous to classical confidence intervals.

44 See Figure D.13 on page 86.
45 In this case, the prior is a rectangular density function, with the parameter  bounded between 0

and 1. In other cases, such as estimating the mean  of a normal distribution, which is unbounded,

a flat prior of the form () =  (for any positive constant ) over −∞    ∞ does not enclose a

finite probability, and hence cannot represent a density function. When combined with the likelihood,

such an improper prior can nevertheless lead to a proper posterior distribution–that is, to a posterior

density that integrates to 1.

A more subtle point is that a flat prior for one parametrization of a probability model for the data

need not be flat for an alternative parametrization: For example, suppose that you take the odds

 ≡ (1− ) as the parameter of interest, or the logit ≡ log [(1− )]; a flat prior for  is not flat

for  or for the logit.
46An alternative is to take the mean of the posterior distribution as a point estimate of . In

most cases, however, the posterior distribution will approach a normal distribution as the sample size

increases, and the mean and mode will therefore be approximately equal if the sample size is sufficiently

large.
47An exception to this rule occurs when the prior distribution assigns zero density to some values of

the parameter; such values will necessarily have posterior densities of zero as well.
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A very simple choice is the central posterior interval : The 100 percent central

posterior interval runs from the (1 − )2 to the (1 + )2 quantile of the posterior

distribution. Unlike a classical confidence interval, however, the interpretation of which

is famously convoluted (to the confusion of innumerable students of basic statistics),

a Bayesian posterior interval has a simple interpretation as a probability statement:

The probability is 95 that the parameter is in the 95-percent posterior interval. This

difference reflects the Bayesian interpretation of a parameter as a random variable, with

the posterior distribution expressing subjective uncertainty in the value of the parameter

after observing the data.

Ninety-five percent central posterior intervals for the example are shown for the two

posterior distributions in Figure D.7.3.

D.7.5 Bayesian Inference for Several Parameters

Bayesian inference extends straightforwardly to the simultaneous estimation of several

parameters α ≡ [1 2     ]0. In this case, it is necessary to specify a joint prior
distribution for the parameters, (α), along with the joint likelihood, (α). Then, as in

the case of one parameter, the joint posterior distribution is proportional to the product

of the prior distribution and the likelihood:

(α|) ∝ (α)(α)

Inference typically focusses on the marginal posterior distribution of each parameter,

(|).

D.8 Recommended Reading

Almost any introductory text in mathematical statistics, and many econometric texts,

cover the subject matter of this appendix more formally and in greater detail. Cox

and Hinkley (1974) is a standard, if relatively difficult, treatment of most of the topics
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in this appendix. A compact summary appears in Zellner (1983). Wonnacott and

Wonnacott (1990) present insightful treatments of many of these topics at a much

lower level of mathematical sophistication; I particularly recommend this source if you

found the un-starred parts of this appendix too terse. A good, relatively accessible

discussion of asymptotic distribution theory appears in Theil (1971, Chapter 8). A

general treatment of Wald, likelihood-ratio, and score tests can be found in Engle (1984).

Finally, Lancaster (2004) presents an excellent and accessible introduction to Bayesian

methods.
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